Skip to main content

Genome-Wide Association Studies of Obesity

  • Chapter
  • First Online:
The Genetics of Obesity

Abstract

Genome-wide association studies (GWAS) have accelerated the discovery of genetic variants associated with susceptibility to common complex diseases, such as obesity. Following the first robust GWAS of BMI and risk of obesity identified in 2007, GWAS have delivered 73 additional common loci associated with a wide range of obesity-related traits. These loci highlight a variety of molecular and physiological mechanisms involved in shaping these traits. However, even in combination, these loci explain only a small proportion of overall phenotypic heritability indicating that much of the genetic variation in obesity traits remains unexplained. Here, we discuss how the GWAS approach has been applied to the study of anthropometric phenotypes related to overall obesity and fat distribution and describe some of the clues to trait biology that are emerging. We also highlight some of the limitations of this work and future directions for research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMI:

Body mass index

CNV:

Copy number variation

GIANT:

Genetic Investigation of ANthropometric Traits

GWAS:

Genome-wide association studies

LD:

Linkage disequilibrium

MAF:

Minor allele frequency

SNP:

Single nucleotide polymorphism

T2D:

Type 2 Diabetes

WC:

Waist circumference

WHR:

Waist–hip ratio

References

  1. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ et al (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377(9765):557–567

    PubMed  Google Scholar 

  2. Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML et al (2011) The global obesity pandemic: shaped by global drivers and local environments. Lancet 378(9793):804–814

    PubMed  Google Scholar 

  3. Stunkard AJ, Foch TT, Hrubec Z (1986) A twin study of human obesity. JAMA 256(1):51–54

    CAS  PubMed  Google Scholar 

  4. Stunkard AJ, Harris JR, Pedersen NL, McClearn GE (1990) The body-mass index of twins who have been reared apart. N Engl J Med 322(21):1483–1487

    CAS  PubMed  Google Scholar 

  5. Stunkard AJ (1991) Genetic contributions to human obesity. Res Publ Assoc Res Nerv Ment Dis 69:205–218

    CAS  PubMed  Google Scholar 

  6. Bouchard C, Tremblay A, Despres JP, Nadeau A, Lupien PJ, Theriault G et al (1990) The response to long-term overfeeding in identical twins. N Engl J Med 322(21):1477–1482

    CAS  PubMed  Google Scholar 

  7. Elks CE, den Hoed M, Zhao JH, Sharp SJ, Wareham NJ, Loos RJ et al (2012) Variability in the heritability of body mass index: a systematic review and meta-regression. Front Endocrinol (Lausanne) 3:29

    Google Scholar 

  8. Rose KM, Newman B, Mayer-Davis EJ, Selby JV (1998) Genetic and behavioral determinants of waist-hip ratio and waist circumference in women twins. Obes Res 6(6):383–392

    CAS  PubMed  Google Scholar 

  9. Mills GW, Avery PJ, McCarthy MI, Hattersley AT, Levy JC, Hitman GA et al (2004) Heritability estimates for beta cell function and features of the insulin resistance syndrome in UK families with an increased susceptibility to type 2 diabetes. Diabetologia 47(4):732–738

    CAS  PubMed  Google Scholar 

  10. Souren NY, Paulussen AD, Loos RJ, Gielen M, Beunen G, Fagard R et al (2007) Anthropometry, carbohydrate and lipid metabolism in the East Flanders Prospective Twin Survey: heritabilities. Diabetologia 50(10):2107–2116

    CAS  PubMed  Google Scholar 

  11. Zillikens MC, Yazdanpanah M, Pardo LM, Rivadeneira F, Aulchenko YS, Oostra BA et al (2008) Sex-specific genetic effects influence variation in body composition. Diabetologia 51(12):2233–2241

    CAS  PubMed  Google Scholar 

  12. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ et al (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387(6636):903–908

    CAS  PubMed  Google Scholar 

  13. Echwald SM, Rasmussen SB, Sorensen TIA, Andersen T, TybjaergHansen A, Clausen JO et al (1997) Identification of two novel missense mutations in the human OB gene. Int J Obes Relat Metab Disord 21(4):321–326

    CAS  PubMed  Google Scholar 

  14. Oksanen L, Kainulainen K, Heiman M, Mustajoki P, KauppinenMakelin R, Kontula K (1997) Novel polymorphism of the human ob gene promoter in lean and morbidly obese subjects. Int J Obes Relat Metab Disord 21(6):489–494

    CAS  PubMed  Google Scholar 

  15. Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D et al (1998) A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392(6674):398–401

    CAS  PubMed  Google Scholar 

  16. Jackson RS, Creemers JWM, Ohagi S, RaffinSanson ML, Sanders L, Montague CT et al (1997) Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet 16(3):303–306

    CAS  PubMed  Google Scholar 

  17. Saunders CL, Chiodini BD, Sham P, Lewis CM, Abkevich V, Adeyemo AA et al (2007) Meta-analysis of genome-wide linkage studies in BMI and obesity. Obesity (Silver Spring) 15(9):2263–2275

    Google Scholar 

  18. Botstein D, Risch N (2003) Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 33(Suppl):228–237

    CAS  PubMed  Google Scholar 

  19. Tabor HK, Risch NJ, Myers RM (2002) Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 3(5):391–397

    CAS  PubMed  Google Scholar 

  20. Farooqi IS, Yeo GS, Keogh JM, Aminian S, Jebb SA, Butler G et al (2000) Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 106(2):271–279

    CAS  PubMed  Google Scholar 

  21. Hinney A, Volckmar AL, Knoll N (2013) Melanocortin-4 receptor in energy homeostasis and obesity pathogenesis. Prog Mol Biol Transl Sci 114:147–191

    CAS  PubMed  Google Scholar 

  22. Farooqi S, O’Rahilly S (2006) Genetics of obesity in humans. Endocr Rev 27(7):710–718

    CAS  PubMed  Google Scholar 

  23. Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6(2):95–108

    CAS  PubMed  Google Scholar 

  24. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP et al (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9(5):356–369

    CAS  PubMed  Google Scholar 

  25. Herbert A, Gerry NP, McQueen MB (2006) A common genetic variant is associated with adult and childhood obesity. Science 312:279–283

    CAS  PubMed  Google Scholar 

  26. The International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437(7063):1299–1320

    Google Scholar 

  27. Frayling TM, Timpson NJ, Weedon MN (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–894

    CAS  PubMed  Google Scholar 

  28. Speliotes EK, Willer CJ, Berndt SI (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42:937–948

    CAS  PubMed  Google Scholar 

  29. Loos RJ, Lindgren CM, Li S (2008) Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 40:768–775

    CAS  PubMed  Google Scholar 

  30. Willer CJ, Speliotes EK, Loos RJ (2009) Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 41:25–34

    CAS  PubMed  Google Scholar 

  31. Thorleifsson G, Walters GB, Gudbjartsson DF (2009) Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet 41:18–24

    CAS  PubMed  Google Scholar 

  32. Okada Y, Kubo M, Ohmiya H, Takahashi A, Kumasaka N, Hosono N et al (2012) Common variants at CDKAL1 and KLF9 are associated with body mass index in East Asian populations. Nat Genet 44(3):302–306

    CAS  PubMed  Google Scholar 

  33. Wen W, Cho YS, Zheng W, Dorajoo R, Kato N, Qi L et al (2012) Meta-analysis identifies common variants associated with body mass index in East Asians. Nat Genet 44(3):307–311

    CAS  PubMed  Google Scholar 

  34. Cotsapas C, Speliotes EK, Hatoum IJ (2009) Common body mass index-associated variants confer risk of extreme obesity. Hum Mol Genet 18:3502–3507

    CAS  PubMed  Google Scholar 

  35. Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14(1):7–23

    CAS  PubMed  Google Scholar 

  36. Beckers S, Zegers D, Van Gaal LF, Van Hul W (2009) The role of the leptin-melanocortin signalling pathway in the control of food intake. Crit Rev Eukaryot Gene Expr 19(4):267–287

    CAS  PubMed  Google Scholar 

  37. Kim YJ, Sano T, Nabetani T, Asano Y, Hirabayashi Y (2012) GPRC5B activates obesity-associated inflammatory signaling in adipocytes. Sci Signal 5(251):ra85

    PubMed  Google Scholar 

  38. Wheeler E, Huang N, Bochukova EG, Keogh JM, Lindsay S, Garg S et al (2013) Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity. Nat Genet 45:513–517

    CAS  PubMed  Google Scholar 

  39. Bochukova EG, Huang N, Keogh J, Henning E, Purmann C, Blaszczyk K et al (2010) Large, rare chromosomal deletions associated with severe early-onset obesity. Nature 463(7281):666–670

    CAS  PubMed  Google Scholar 

  40. Walters RG, Jacquemont S, Valsesia A, de Smith AJ, Martinet D, Andersson J et al (2010) A new highly penetrant form of obesity due to deletions on chromosome 16p11.2. Nature 463(7281):671–675

    CAS  PubMed  Google Scholar 

  41. Jacquemont S, Reymond A, Zufferey F, Harewood L, Walters RG, Kutalik Z et al (2011) Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature 478(7367):97–102

    CAS  PubMed  Google Scholar 

  42. Hassanein MT, Lyon HN, Nguyen TT, Akylbekova EL, Waters K, Lettre G et al (2010) Fine mapping of the association with obesity at the FTO locus in African-derived populations. Hum Mol Genet 19(14):2907–2916

    CAS  PubMed  Google Scholar 

  43. Peters U, North KE, Sethupathy P, Buyske S, Haessler J, Jiao S et al (2013) A systematic mapping approach of 16q12.2/FTO and BMI in more than 20,000 African Americans narrows in on the underlying functional variation: results from the Population Architecture using Genomics and Epidemiology (PAGE) study. PLoS Genet 9(1):e1003171

    CAS  PubMed  Google Scholar 

  44. Jackson RS, Creemers JW, Ohagi S, Raffin-Sanson ML, Sanders L, Montague CT et al (1997) Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet 16(3):303–306

    CAS  PubMed  Google Scholar 

  45. Benzinou M, Creemers JW, Choquet H, Lobbens S, Dina C, Durand E et al (2008) Common nonsynonymous variants in PCSK1 confer risk of obesity. Nat Genet 40(8):943–945

    CAS  PubMed  Google Scholar 

  46. Arragain S, Handelman SK, Forouhar F, Wei FY, Tomizawa K, Hunt JF et al (2010) Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N6-threonylcarbamoyladenosine in tRNA. J Biol Chem 285(37):28425–28433

    CAS  PubMed  Google Scholar 

  47. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB et al (2007) A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 39(6):770–775

    CAS  PubMed  Google Scholar 

  48. Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y et al (2010) Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet 42(3):210–215

    CAS  PubMed  Google Scholar 

  49. Groenewoud MJ, Dekker JM, Fritsche A, Reiling E, Nijpels G, Heine RJ et al (2008) Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia 51(9):1659–1663

    CAS  PubMed  Google Scholar 

  50. Kirchhoff K, Machicao F, Haupt A, Schafer SA, Tschritter O, Staiger H et al (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51(4):597–601

    CAS  PubMed  Google Scholar 

  51. Berndt SI, Gustafsson S, Magi R, Ganna A, Wheeler E, Feitosa MF et al (2013) Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet 45:501–512

    CAS  PubMed  Google Scholar 

  52. Meyre D, Delplanque J, Chevre JC, Lecoeur C, Lobbens S, Gallina S et al (2009) Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat Genet 41(2):157–159

    CAS  PubMed  Google Scholar 

  53. Jiao H, Arner P, Hoffstedt J, Brodin D, Dubern B, Czernichow S et al (2011) Genome wide association study identifies KCNMA1 contributing to human obesity. BMC Med Genomics 4:51

    CAS  PubMed  Google Scholar 

  54. Bradfield JP, Taal HR, Timpson NJ, Scherag A, Lecoeur C, Warrington NM et al (2012) A genome-wide association meta-analysis identifies new childhood obesity loci. Nat Genet 44(5):526

    CAS  PubMed  Google Scholar 

  55. Scherag A, Dina C, Hinney A, Vatin V, Scherag S, Vogel CIG et al (2010) Two new loci for body-weight regulation identified in a joint analysis of genome-wide association studies for early-onset extreme obesity in French and German study groups. PLoS Genet 6(4):e1000916

    PubMed  Google Scholar 

  56. Lindgren CM, Heid IM, Randall JC, Lamina C, Steinthorsdottir V, Qi L et al (2009) Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution. PLoS Genet 5(6):e1000508

    PubMed  Google Scholar 

  57. Kilpelainen TO, Zillikens MC, Stancakova A, Finucane FM, Ried JS, Langenberg C et al (2011) Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat Genet 43(8):753–760

    CAS  PubMed  Google Scholar 

  58. Rung J, Cauchi S, Albrechtsen A, Shen L, Rocheleau G, Cavalcanti-Proenca C et al (2009) Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet 41(10):1110–1115

    CAS  PubMed  Google Scholar 

  59. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M et al (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466(7307):707–713

    CAS  PubMed  Google Scholar 

  60. Fox CS, Liu Y, White CC, Feitosa M, Smith AV, Heard-Costa N et al (2012) Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. PLoS Genet 8(5):e1002695

    CAS  PubMed  Google Scholar 

  61. Shu XO, Long J, Cai Q, Qi L, Xiang YB, Cho YS et al (2010) Identification of new genetic risk variants for type 2 diabetes. PLoS Genet 6(9):e1001127

    PubMed  Google Scholar 

  62. Imamura M, Iwata M, Maegawa H, Watada H, Hirose H, Tanaka Y et al (2011) Genetic variants at CDC123/CAMK1D and SPRY2 are associated with susceptibility to type 2 diabetes in the Japanese population. Diabetologia 54(12):3071–3077

    CAS  PubMed  Google Scholar 

  63. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753

    CAS  PubMed  Google Scholar 

  64. Gibson G (2011) Rare and common variants: twenty arguments. Nat Rev Genet 13(2):135–145

    Google Scholar 

  65. Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N, Cunningham JM et al (2011) Genome partitioning of genetic variation for complex traits using common SNPs. Nat Genet 43(6):519–525

    CAS  PubMed  Google Scholar 

  66. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR et al (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42(7):565–569

    CAS  PubMed  Google Scholar 

  67. Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci U S A 109(4):1193–1198

    CAS  PubMed  Google Scholar 

  68. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era–concepts and misconceptions. Nat Rev Genet 9(4):255–266

    CAS  PubMed  Google Scholar 

  69. Bell CG, Finer S, Lindgren CM, Wilson GA, Rakyan VK, Teschendorff AE et al (2010) Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus. PLoS One 5(11):e14040

    PubMed  Google Scholar 

  70. Boissel S, Reish O, Proulx K, Kawagoe-Takaki H, Sedgwick B, Yeo GS et al (2009) Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet 85(1):106–111

    CAS  PubMed  Google Scholar 

  71. Meyre D, Proulx K, Kawagoe-Takaki H, Vatin V, Gutierrez-Aguilar R, Lyon D et al (2010) Prevalence of loss-of-function FTO mutations in lean and obese individuals. Diabetes 59(1):311–318

    CAS  PubMed  Google Scholar 

  72. Stratigopoulos G, Padilla SL, LeDuc CA, Watson E, Hattersley AT, McCarthy MI et al (2008) Regulation of Fto/Ftm gene expression in mice and humans. Am J Physiol Regul Integr Comp Physiol 294(4):R1185–R1196

    CAS  PubMed  Google Scholar 

  73. Ansley SJ, Badano JL, Blacque OE, Hill J, Hoskins BE, Leitch CC et al (2003) Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 425(6958):628–633

    CAS  PubMed  Google Scholar 

  74. Church C, Lee S, Bagg EA, McTaggart JS, Deacon R, Gerken T et al (2009) A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene. PLoS Genet 5(8):e1000599

    PubMed  Google Scholar 

  75. Church C, Moir L, McMurray F, Girard C, Banks GT, Teboul L et al (2010) Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet 42(12):1086–1092

    CAS  PubMed  Google Scholar 

  76. Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS et al (2007) The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318(5855):1469–1472

    CAS  PubMed  Google Scholar 

  77. Gulati P, Cheung MK, Antrobus R, Church CD, Harding HP, Tung YC et al (2013) Role for the obesity-related FTO gene in the cellular sensing of amino acids. Proc Natl Acad Sci U S A 110:2557–2562

    CAS  PubMed  Google Scholar 

  78. Hinney A, Schmidt A, Nottebom K, Heibult O, Becker I, Ziegler A et al (1999) Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J Clin Endocrinol Metab 84(4):1483–1486

    CAS  PubMed  Google Scholar 

  79. Krude H, Gruters A (2000) Implications of proopiomelanocortin (POMC) mutations in humans: the POMC deficiency syndrome. Trends Endocrinol Metab 11(1):15–22

    CAS  PubMed  Google Scholar 

  80. Farooqi IS, O’Rahilly S (2008) Mutations in ligands and receptors of the leptin-melanocortin pathway that lead to obesity. Nat Clin Pract Endocrinol Metab 4(10):569–577

    CAS  PubMed  Google Scholar 

  81. Vanevski F, Xu B (2013) Molecular and neural bases underlying roles of BDNF in the control of body weight. Front Neurosci 7:37

    PubMed  Google Scholar 

  82. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74

    CAS  PubMed  Google Scholar 

  83. Stranger BE, Forrest MS, Clark AG, Minichiello MJ, Deutsch S, Lyle R et al (2005) Genome-wide associations of gene expression variation in humans. PLoS Genet 1(6):e78

    PubMed  Google Scholar 

  84. Dimas AS, Deutsch S, Stranger BE, Montgomery SB, Borel C, Attar-Cohen H et al (2009) Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325(5945):1246–1250

    CAS  PubMed  Google Scholar 

  85. Borel C, Deutsch S, Letourneau A, Migliavacca E, Montgomery SB, Dimas AS et al (2011) Identification of cis- and trans-regulatory variation modulating microRNA expression levels in human fibroblasts. Genome Res 21(1):68–73

    CAS  PubMed  Google Scholar 

  86. Rantalainen M, Herrera BM, Nicholson G, Bowden R, Wills QF, Min JL et al (2011) MicroRNA expression in abdominal and gluteal adipose tissue is associated with mRNA expression levels and partly genetically driven. PLoS One 6(11):e27338

    CAS  PubMed  Google Scholar 

  87. Grundberg E, Small KS, Hedman AK, Nica AC, Buil A, Keildson S et al (2012) Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat Genet 44(10):1084–1089

    CAS  PubMed  Google Scholar 

  88. Parts L, Hedman AK, Keildson S, Knights AJ, Abreu-Goodger C, van de Bunt M et al (2012) Extent, causes, and consequences of small RNA expression variation in human adipose tissue. PLoS Genet 8(5):e1002704

    CAS  PubMed  Google Scholar 

  89. Ren D, Zhou Y, Morris D, Li M, Li Z, Rui L (2007) Neuronal SH2B1 is essential for controlling energy and glucose homeostasis. J Clin Invest 117(2):397–406

    CAS  PubMed  Google Scholar 

  90. Saxena R, Hivert MF, Langenberg C, Tanaka T, Pankow JS, Vollenweider P et al (2010) Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat Genet 42(2):142–148

    CAS  PubMed  Google Scholar 

  91. Wang K, Li M, Hakonarson H (2010) Analysing biological pathways in genome-wide association studies. Nat Rev Genet 11(12):843–854

    CAS  PubMed  Google Scholar 

  92. Snijder MB, Dekker JM, Visser M, Bouter LM, Stehouwer CD, Kostense PJ et al (2003) Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn Study. Am J Clin Nutr 77(5):1192–1197

    CAS  PubMed  Google Scholar 

  93. Shao J, Yu L, Shen X, Li D, Wang K (2010) Waist-to-height ratio, an optimal predictor for obesity and metabolic syndrome in Chinese adults. J Nutr Health Aging 14(9):782–785

    CAS  PubMed  Google Scholar 

  94. Garg A (2004) Acquired and inherited lipodystrophies. N Engl J Med 350(12):1220–1234

    CAS  PubMed  Google Scholar 

  95. Chambers JC, Elliott P, Zabaneh D, Zhang W, Li Y, Froguel P et al (2008) Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat Genet 40(6):716–718

    CAS  PubMed  Google Scholar 

  96. Heard-Costa NL, Zillikens MC, Monda KL, Johansson A, Harris TB, Fu M et al (2009) NRXN3 is a novel locus for waist circumference: a genome-wide association study from the CHARGE Consortium. PLoS Genet 5(6):e1000539

    PubMed  Google Scholar 

  97. Bille DS, Banasik K, Justesen JM, Sandholt CH, Sandbaek A, Lauritzen T et al (2011) Implications of central obesity-related variants in LYPLAL1, NRXN3, MSRA, and TFAP2B on quantitative metabolic traits in adult Danes. PLoS One 6(6):e20640

    CAS  PubMed  Google Scholar 

  98. Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Steinthorsdottir V et al (2010) Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet 42(11):949–960

    CAS  PubMed  Google Scholar 

  99. Vattikuti S, Guo J, Chow CC (2012) Heritability and genetic correlations explained by common SNPs for metabolic syndrome traits. PLoS Genet 8(3):e1002637

    CAS  PubMed  Google Scholar 

  100. Holt LJ, Siddle K (2005) Grb10 and Grb14: enigmatic regulators of insulin action–and more? Biochem J 388(Pt 2):393–406

    CAS  PubMed  Google Scholar 

  101. Nouaille S, Blanquart C, Zilberfarb V, Boute N, Perdereau D, Roix J et al (2006) Interaction with Grb14 results in site-specific regulation of tyrosine phosphorylation of the insulin receptor. EMBO Rep 7(5):512–518

    CAS  PubMed  Google Scholar 

  102. Ridker PM, Pare G, Parker AN, Zee RY, Miletich JP, Chasman DI (2009) Polymorphism in the CETP gene region, HDL cholesterol, and risk of future myocardial infarction: genomewide analysis among 18 245 initially healthy women from the Women’s Genome Health Study. Circ Cardiovasc Genet 2(1):26–33

    CAS  PubMed  Google Scholar 

  103. Manning AK, Hivert MF, Scott RA, Grimsby JL, Bouatia-Naji N, Chen H et al (2012) A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet 44(6):659–669

    CAS  PubMed  Google Scholar 

  104. Gesta S, Bezy O, Mori MA, Macotela Y, Lee KY, Kahn CR (2011) Mesodermal developmental gene Tbx15 impairs adipocyte differentiation and mitochondrial respiration. Proc Natl Acad Sci U S A 108(7):2771–2776

    CAS  PubMed  Google Scholar 

  105. Gesta S, Bluher M, Yamamoto Y, Norris AW, Berndt J, Kralisch S et al (2006) Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci U S A 103(17):6676–6681

    CAS  PubMed  Google Scholar 

  106. Dastani Z, Hivert MF, Timpson N, Perry JR, Yuan X, Scott RA et al (2012) Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals. PLoS Genet 8(3):e1002607

    CAS  PubMed  Google Scholar 

  107. Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F et al (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467(7317):832–838

    CAS  PubMed  Google Scholar 

  108. Steinberg GR, Kemp BE, Watt MJ (2007) Adipocyte triglyceride lipase expression in human obesity. Am J Physiol Endocrinol Metab 293(4):E958–E964

    CAS  PubMed  Google Scholar 

  109. Zaitlen N, Pasaniuc B, Gur T, Ziv E, Halperin E (2010) Leveraging genetic variability across populations for the identification of causal variants. Am J Hum Genet 86(1):23–33

    CAS  PubMed  Google Scholar 

  110. Morris AP (2011) Transethnic meta-analysis of genomewide association studies. Genet Epidemiol 35(8):809–822

    PubMed  Google Scholar 

  111. Franceschini N, van Rooij FJ, Prins BP, Feitosa MF, Karakas M, Eckfeldt JH et al (2012) Discovery and fine mapping of serum protein loci through transethnic meta-analysis. Am J Hum Genet 91(4):744–753

    CAS  PubMed  Google Scholar 

  112. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65

    PubMed  Google Scholar 

  113. Pritchard JK (2001) Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 69(1):124–137

    CAS  PubMed  Google Scholar 

  114. Pritchard JK, Cox NJ (2002) The allelic architecture of human disease genes: common disease-common variant…or not? Hum Mol Genet 11(20):2417–2423

    CAS  PubMed  Google Scholar 

  115. Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11(6):415–425

    CAS  PubMed  Google Scholar 

  116. Franco M, Bilal U, Ordunez P, Benet M, Morejon A, Caballero B et al (2013) Population-wide weight loss and regain in relation to diabetes burden and cardiovascular mortality in Cuba 1980-2010: repeated cross sectional surveys and ecological comparison of secular trends. BMJ 346:f1515

    PubMed  Google Scholar 

  117. Kilpelainen TO, Qi L, Brage S, Sharp SJ, Sonestedt E, Demerath E et al (2011) Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med 8(11):e1001116

    PubMed  Google Scholar 

  118. Loos RJ (2012) Genetic determinants of common obesity and their value in prediction. Best Pract Res Clin Endocrinol Metab 26(2):211–226

    CAS  PubMed  Google Scholar 

  119. Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH (1997) Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med 337(13):869–873

    CAS  PubMed  Google Scholar 

  120. Paternoster L, Evans DM, Nohr EA, Holst C, Gaborieau V, Brennan P et al (2011) Genome-wide population-based association study of extremely overweight young adults–the GOYA study. PLoS One 6(9):e24303

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark I. McCarthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hedman, Å.K., Lindgren, C.M., McCarthy, M.I. (2014). Genome-Wide Association Studies of Obesity. In: Grant, S. (eds) The Genetics of Obesity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8642-8_3

Download citation

Publish with us

Policies and ethics