Molecular Imaging of Ovarian Carcinoma

  • Lucia M. A. CraneEmail author
  • Rick G. Pleijhuis
  • Marleen van Oosten
  • Gooitzen M. van Dam


Molecular imaging literally means visualization of molecules but more generally comprises a number of techniques used to visualize single cells or clusters of cells, cell processes and individual receptors and other biomarkers. Its applications are multiple, ranging from imaging of a single biomarker to following tumour growth in time.

In cancer, molecular imaging can be applied in both diagnostics and therapy. The main goal in oncology is to differentiate tumour cells from healthy cells in order to reduce tumour load and, subsequently, morbidity. This will be addressed in this chapter, together with the basic requirements and techniques in molecular imaging, with the focus on the preclinical and clinical application in ovarian cancer.


Epidemiology Epithelial ovarian cancer Molecular imaging Bioluminescence imaging Photoacoustic imaging Radioguided imaging Photodynamic therapy 


  1. 1.
    Crane LM, Themelis G, Arts HJ, Buddingh KT, Brouwers AH, Ntziachristos V, et al. Intraoperative near-infrared fluorescence imaging for sentinel lymph node detection in vulvar cancer: first clinical results. Gynecol Oncol. 2011;120(2):291–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Hirche C, Murawa D, Mohr Z, Kneif S, Hunerbein M. ICG fluorescence-guided sentinel node biopsy for axillary nodal staging in breast cancer. Breast Cancer Res Treat. 2010;121(2):373–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Schubert GA, Seiz-Rosenhagen M, Ortler M, Czabanka M, Scheufler KM, Thomé C. Cortical indocyanine green videography for quantification of acute hypoperfusion after subarachnoid hemorrhage: a feasibility study. Neurosurgery. 2012;71(2 Suppl Operative):ons260–7Google Scholar
  4. 4.
    Yamamoto M, Orihashi K, Nishimori H, Wariishi S, Fukutomi T, Kondo N, et al. Indocyanine green angiography for intra-operative assessment in vascular surgery. Eur J Vasc Endovasc Surg. 2012;43(4):426–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Ntziachristos V. Fluorescence molecular imaging. Annu Rev Biomed Eng. 2006;8:1–33.PubMedCrossRefGoogle Scholar
  6. 6.
    Ntziachristos V, Razansky D. Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem Rev. 2010;110(5):2783–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Taruttis A, Ntziachristos V. Translational optical imaging. AJR Am J Roentgenol. 2012;199(2):263–71.PubMedCrossRefGoogle Scholar
  8. 8.
    Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61(4):250–81.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Mitsunaga M, Ogawa M, Kosaka N, Rosenblum LT, Choyke PL, Kobayashi H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med. 2011;17(12):1685–91.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Terwisscha van Scheltinga AG, van Dam GM, Nagengast WB, Ntziachristos V, Hollema H, Herek JL, et al. Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies. J Nucl Med. 2011;52(11):1778–85.PubMedCrossRefGoogle Scholar
  11. 11.
    Foltz WD, Jaffray DA. Principles of magnetic resonance imaging. Radiat Res. 2012;177(4):331–48.PubMedCrossRefGoogle Scholar
  12. 12.
    Alford R, Simpson HM, Duberman J, Hill GC, Ogawa M, Regino C, et al. Toxicity of organic fluorophores used in molecular imaging: literature review. Mol Imaging. 2009;8(6):341–54.PubMedGoogle Scholar
  13. 13.
    van Oosten M, Crane LM, Bart J, van Leeuwen FW, van Dam GM. Selecting potential targetable biomarkers for imaging purposes in colorectal cancer using TArget Selection Criteria (TASC): a novel target identification tool. Transl Oncol. 2011;4(2):71–82.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Gundogdu F, Soylu F, Erkan L, Tatli O, Mavi S, Yavuzcan A. The role of serum CA-125 levels and CA-125 tissue expression positivity in the prediction of the recurrence of stage III and IV epithelial ovarian tumors (CA-125 levels and tissue CA-125 in ovarian tumors). Arch Gynecol Obstet. 2011;283(6):1397–402.Google Scholar
  15. 15.
    Bellati F, Napoletano C, Gasparri ML, Visconti V, Zizzari IG, Ruscito I, et al. Monoclonal antibodies in gynecological cancer: a critical point of view. Clin Dev Immunol. 2011;2011:890758.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Woelber L, Mueller V, Eulenburg C, Schwarz J, Carney W, Jaenicke F, et al. Serum carbonic anhydrase IX during first-line therapy of ovarian cancer. Gynecol Oncol. 2010;117(2):183–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Hynninen P, Vaskivuo L, Saarnio J, Haapasalo H, Kivela J, Pastorekova S, et al. Expression of transmembrane carbonic anhydrases IX and XII in ovarian tumours. Histopathology. 2006;49(6):594–602.PubMedCrossRefGoogle Scholar
  18. 18.
    Poulsen SA. Carbonic anhydrase inhibition as a cancer therapy: a review of patent literature, 2. Expert Opin Ther Pat. 2010;20(6):795–806.PubMedCrossRefGoogle Scholar
  19. 19.
    Kowalewska M, Radziszewski J, Kulik J, Barathova M, Nasierowska-Guttmajer A, Bidzinski M, et al. Detection of carbonic anhydrase 9-expressing tumor cells in the lymph nodes of vulvar carcinoma patients by RT-PCR. Int J Cancer. 2005;116(6):957–62.PubMedCrossRefGoogle Scholar
  20. 20.
    Carlin S, Khan N, Ku T, Longo VA, Larson SM, Smith-Jones PM. Molecular targeting of carbonic anhydrase IX in mice with hypoxic HT29 colorectal tumor xenografts. PLoS One. 2010;5(5):e10857.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Barbieri F, Bajetto A, Florio T. Role of chemokine network in the development and progression of ovarian cancer: a potential novel pharmacological target. J Oncol. 2010;2010(1687–8469):426956.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Kajiyama H, Shibata K, Terauchi M, Ino K, Nawa A, Kikkawa F. Involvement of SDF-1alpha/CXCR4 axis in the enhanced peritoneal metastasis of epithelial ovarian carcinoma. Int J Cancer. 2008;122(1):91–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Scotton CJ, Wilson JL, Scott K, Stamp G, Wilbanks GD, Fricker S, et al. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res. 2002;62(20):5930–8.PubMedGoogle Scholar
  24. 24.
    Jiang YP, Wu XH, Xing HY, Du XY. Role of CXCL12 in metastasis of human ovarian cancer. Chin Med J (Engl). 2007;120(14):1251–5.Google Scholar
  25. 25.
    Jiang YP, Wu XH, Shi B, Wu WX, Yin GR. Expression of chemokine CXCL12 and its receptor CXCR4 in human epithelial ovarian cancer: an independent prognostic factor for tumor progression. Gynecol Oncol. 2006;103(1):226–33.PubMedCrossRefGoogle Scholar
  26. 26.
    Ray P, Lewin SA, Mihalko LA, Schmidt BT, Luker KE, Luker GD. Noninvasive imaging reveals inhibition of ovarian cancer by targeting CXCL12-CXCR4. Neoplasia. 2011;13(12):1152–61.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Nomura W, Tanabe Y, Tsutsumi H, Tanaka T, Ohba K, Yamamoto N, et al. Fluorophore labeling enables imaging and evaluation of specific CXCR4-ligand interaction at the cell membrane for fluorescence-based screening. Bioconjug Chem. 2008;19(9):1917–20.PubMedCrossRefGoogle Scholar
  28. 28.
    Nimmagadda S, Pullambhatla M, Pomper MG. Immunoimaging of CXCR4 expression in brain tumor xenografts using SPECT/CT. J Nucl Med. 2009;50(7):1124–30.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Zhang J, Tian J, Li T, Guo H, Shen L. 99mTc-AMD3100: a novel potential receptor-targeting radiopharmaceutical for tumor imaging. Chin Chem Lett. 2010;21(4):461–3.CrossRefGoogle Scholar
  30. 30.
    Weiss ID, Jacobson O, Kiesewetter DO, Jacobus JP, Szajek LP, Chen X, et al. Positron emission tomography imaging of tumors expressing the human chemokine receptor CXCR4 in mice with the use of 64Cu-AMD3100. Mol Imaging Biol. 2012;14(1):106–14.PubMedCrossRefGoogle Scholar
  31. 31.
    Noske A, Schwabe M, Weichert W, Darb-Esfahani S, Buckendahl AC, Sehouli J, et al. An intracellular targeted antibody detects EGFR as an independent prognostic factor in ovarian carcinomas. BMC Cancer. 2011;11:294.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Zeineldin R, Muller CY, Stack MS, Hudson LG. Targeting the EGF receptor for ovarian cancer therapy. J Oncol. 2010;2010(1687–8469):414676.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Gui T, Shen K. The epidermal growth factor receptor as a therapeutic target in epithelial ovarian cancer. Cancer Epidemiol. 2012;36(5):490–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Lin CK, Chao TK, Yu CP, Yu MH, Jin JS. The expression of six biomarkers in the four most common ovarian cancers: correlation with clinicopathological parameters. APMIS. 2009;117(3):162–75.PubMedCrossRefGoogle Scholar
  35. 35.
    Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 1995;19(3):183–232.PubMedCrossRefGoogle Scholar
  36. 36.
    Heath CH, Deep NL, Sweeny L, Zinn KR, Rosenthal EL. Use of panitumumab-IRDye800 to image microscopic head and neck cancer in an orthotopic surgical model. Ann Surg Oncol. 2012;19(12):3879–87.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Sano K, Mitsunaga M, Nakajima T, Choyke PL, Kobayashi H. In vivo breast cancer characterization imaging using two monoclonal antibodies activatably labeled with near infrared fluorophores. Breast Cancer Res. 2012;14(2):R61.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Nayak TK, Garmestani K, Baidoo KE, Milenic DE, Brechbiel MW. PET imaging of tumor angiogenesis in mice with VEGF-A targeted (86)Y-CHX-A″-DTPA-bevacizumab. Int J Cancer. 2011;128(4):920–6.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Ogawa M, Kosaka N, Choyke PL, Kobayashi H. In vivo molecular imaging of cancer with a quenching near-infrared fluorescent probe using conjugates of monoclonal antibodies and indocyanine green. Cancer Res. 2009;69(4):1268–72.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Bellone S, Siegel ER, Cocco E, Cargnelutti M, Silasi DA, Azodi M, et al. Overexpression of epithelial cell adhesion molecule in primary, metastatic, and recurrent/chemotherapy-resistant epithelial ovarian cancer: implications for epithelial cell adhesion molecule-specific immunotherapy. Int J Gynecol Cancer. 2009;19(5):860–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Shim HS, Yoon BS, Cho NH. Prognostic significance of paired epithelial cell adhesion molecule and E-cadherin in ovarian serous carcinoma. Hum Pathol. 2009;40(5):693–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Sun Y, Shukla G, Pero SC, Currier E, Sholler G, Krag D. Single tumor imaging with multiple antibodies targeting different antigens. Biotechniques. 2012;0(0):1–3.PubMedGoogle Scholar
  43. 43.
    Tavri S, Jha P, Meier R, Henning TD, Muller T, Hostetter D, et al. Optical imaging of cellular immunotherapy against prostate cancer. Mol Imaging. 2009;8(1):15–26.PubMedGoogle Scholar
  44. 44.
    Eder M, Knackmuss S, Le Gall F, Reusch U, Rybin V, Little M, et al. 68Ga-labelled recombinant antibody variants for immuno-PET imaging of solid tumours. Eur J Nucl Med Mol Imaging. 2010;37(7):1397–407.PubMedCrossRefGoogle Scholar
  45. 45.
    Kalli KR, Oberg AL, Keeney GL, Christianson TJ, Low PS, Knutson KL, et al. Folate receptor alpha as a tumor target in epithelial ovarian cancer. Gynecol Oncol. 2008;108(3):619–26.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Markert S, Lassmann S, Gabriel B, Klar M, Werner M, Gitsch G, et al. Alpha-folate receptor expression in epithelial ovarian carcinoma and non-neoplastic ovarian tissue. Anticancer Res. 2008;28(6):3567–72.PubMedGoogle Scholar
  47. 47.
    Crane LM, Arts HJ, van Oosten M, Low PS, van der Zee AG, van Dam GM, et al. The effect of chemotherapy on expression of folate receptor-alpha in ovarian cancer. Cell Oncol (Dordr). 2012;35(1):9–18.CrossRefGoogle Scholar
  48. 48.
    Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res. 2008;41(1):120–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Jackman AL, Theti DS, Gibbs DD. Antifolates targeted specifically to the folate receptor. Adv Drug Deliv Rev. 2004;56(8):1111–25.PubMedCrossRefGoogle Scholar
  50. 50.
    Reddy JA, Dorton R, Westrick E, Dawson A, Smith T, Xu LC, et al. Preclinical evaluation of EC145, a folate-vinca alkaloid conjugate. Cancer Res. 2007;67(9):4434–42.PubMedCrossRefGoogle Scholar
  51. 51.
    Mathias CJ, Wang S, Waters DJ, Turek JJ, Low PS, Green MA. Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical. J Nucl Med. 1998;39(9):1579–85.PubMedGoogle Scholar
  52. 52.
    Siegel BA, Dehdashti F, Mutch DG, Podoloff DA, Wendt R, Sutton GP, et al. Evaluation of 111In-DTPA-folate as a receptor-targeted diagnostic agent for ovarian cancer: initial clinical results. J Nucl Med. 2003;44(5):700–7.PubMedGoogle Scholar
  53. 53.
    Fisher RE, Siegel BA, Edell SL, Oyesiku NM, Morgenstern DE, Messmann RA, et al. Exploratory study of 99mTc-EC20 imaging for identifying patients with folate receptor-positive solid tumors. J Nucl Med. 2008;49(6):899–906.PubMedCrossRefGoogle Scholar
  54. 54.
    Vaitilingam B, Chelvam V, Kularatne SA, Poh S, Ayala-Lopez W, Low PS. A folate receptor-alpha-specific ligand that targets cancer tissue and not sites of inflammation. J Nucl Med. 2012;53(7):1127–34.PubMedCrossRefGoogle Scholar
  55. 55.
    Jelovac D, Armstrong DK. Role of farletuzumab in epithelial ovarian carcinoma. Curr Pharm Des. 2012;18(25):3812–5.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Teng L, Xie J, Teng L, Lee RJ. Clinical translation of folate receptor-targeted therapeutics. Expert Opin Drug Deliv. 2012;9(8):901–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Wang X, Morales AR, Urakami T, Zhang L, Bondar MV, Komatsu M, et al. Folate receptor-targeted aggregation-enhanced near-IR emitting silica nanoprobe for one-photon in vivo and two-photon ex vivo fluorescence bioimaging. Bioconjug Chem. 2011;22(7):1438–50.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med. 2011;17(10):1315–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Monniaux D, Huet-Calderwood C, Le Bellego F, Fabre S, Monget P, Calderwood DA. Integrins in the ovary. Semin Reprod Med. 2006;24(4):251–61.PubMedCrossRefGoogle Scholar
  60. 60.
    Beer AJ, Lorenzen S, Metz S, Herrmann K, Watzlowik P, Wester HJ, et al. Comparison of integrin alphaVbeta3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: a PET study using 18F-galacto-RGD and 18F-FDG. J Nucl Med. 2008;49(1):22–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Hensley HH, Roder NA, O’Brien SW, Bickel LE, Xiao F, Litwin S, et al. Combined in vivo molecular and anatomic imaging for detection of ovarian carcinoma-associated protease activity and integrin expression in mice. Neoplasia. 2012;14(6):451–62.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Themelis G, Harlaar NJ, Kelder W, Bart J, Sarantopoulos A, van Dam GM, et al. Enhancing surgical vision by using real-time imaging of alphavbeta3-integrin targeted near-infrared fluorescent agent. Ann Surg Oncol. 2011;18(12):3506–13.PubMedCrossRefGoogle Scholar
  63. 63.
    Cao J, Wan S, Tian J, Li S, Deng D, Qian Z, et al. Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis. Contrast Media Mol Imaging. 2012;7(4):390–402.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhu L, Guo N, Li Q, Ma Y, Jacboson O, Lee S, et al. Dynamic PET and optical imaging and compartment modeling using a dual-labeled cyclic RGD peptide probe. Theranostics. 2012;2(8):746–56.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Zhu Z, Miao W, Li Q, Dai H, Ma Q, Wang F, et al. 99mTc-3PRGD2 for integrin receptor imaging of lung cancer: a multicenter study. J Nucl Med. 2012;53(5):716–22.PubMedCrossRefGoogle Scholar
  66. 66.
    Axelsson R, Bach-Gansmo T, Castell-Conesa J, McParland BJ, Study Group. An open-label, multicenter, phase 2a study to assess the feasibility of imaging metastases in late-stage cancer patients with the alpha v beta 3-selective angiogenesis imaging agent 99mTc-NC100692. Acta Radiol. 2010;51(1):40–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Moschos SJ, Sander CA, Wang W, Reppert SL, Drogowski LM, Jukic DM, et al. Pharmacodynamic (phase 0) study using etaracizumab in advanced melanoma. J Immunother. 2010;33(3):316–25.PubMedCrossRefGoogle Scholar
  68. 68.
    Delbaldo C, Raymond E, Vera K, Hammershaimb L, Kaucic K, Lozahic S, et al. Phase I and pharmacokinetic study of etaracizumab (Abegrin), a humanized monoclonal antibody against alphavbeta3 integrin receptor, in patients with advanced solid tumors. Invest New Drugs. 2008;26(1):35–43.PubMedCrossRefGoogle Scholar
  69. 69.
    Roomi MW, Monterrey JC, Kalinovsky T, Rath M, Niedzwiecki A. In vitro modulation of MMP-2 and MMP-9 in human cervical and ovarian cancer cell lines by cytokines, inducers and inhibitors. Oncol Rep. 2010;23(3):605–14.PubMedGoogle Scholar
  70. 70.
    Moss NM, Barbolina MV, Liu Y, Sun L, Munshi HG, Stack MS. Ovarian cancer cell detachment and multicellular aggregate formation are regulated by membrane type 1 matrix metalloproteinase: a potential role in I.p. metastatic dissemination. Cancer Res. 2009;69(17):7121–9.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Naylor MS, Stamp GW, Davies BD, Balkwill FR. Expression and activity of MMPS and their regulators in ovarian cancer. Int J Cancer. 1994;58(1):50–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Xie BW, Mol IM, Keereweer S, van Beek ER, Que I, Snoeks TJ, et al. Dual-wavelength imaging of tumor progression by activatable and targeting near-infrared fluorescent probes in a bioluminescent breast cancer model. PLoS One. 2012;7(2):e31875.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Keereweer S, Mol IM, Vahrmeijer AL, Van Driel PB, Baatenburg de Jong RJ, Kerrebijn JD, et al. Dual wavelength tumor targeting for detection of hypopharyngeal cancer using near-infrared optical imaging in an animal model. Int J Cancer. 2012;131(7):1633–40.PubMedCrossRefGoogle Scholar
  74. 74.
    Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004;4(1):45–60.PubMedCrossRefGoogle Scholar
  75. 75.
    Harris AL. Hypoxia – a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2(1):38–47.PubMedCrossRefGoogle Scholar
  76. 76.
    Mor G, Visintin I, Lai Y, Zhao H, Schwartz P, Rutherford T, et al. Serum protein markers for early detection of ovarian cancer. Proc Natl Acad Sci U S A. 2005;102(21):7677–82.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Trinh XB, Tjalma WA, Vermeulen PB, Van den Eynden G, Van der Auwera I, Van Laere SJ, et al. The VEGF pathway and the AKT/mTOR/p70S6K1 signalling pathway in human epithelial ovarian cancer. Br J Cancer. 2009;100(6):971–8.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Koukourakis MI, Limberis V, Tentes I, Kontomanolis E, Kortsaris A, Sivridis E, et al. Serum VEGF levels and tissue activation of VEGFR2/KDR receptors in patients with breast and gynecologic cancer. Cytokine. 2011;53(3):370–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Wang M, He Y, Shi L, Shi C. Multivariate analysis by Cox proportional hazard model on prognosis of patient with epithelial ovarian cancer. Eur J Gynaecol Oncol. 2011;32(2):171–7.PubMedGoogle Scholar
  80. 80.
    Crasta JA, Mishra S, Vallikad E. Ovarian serous carcinoma: relationship of p53 and bcl-2 with tumor angiogenesis and VEGF expression. Int J Gynecol Pathol. 2011;30(6):521–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, et al. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med. 2011;365(26):2484–96.PubMedCrossRefGoogle Scholar
  82. 82.
    Burger RA. Antiangiogenic agents should be integrated into the standard treatment for patients with ovarian cancer. Ann Oncol. 2011;22 Suppl 8:viii65–8.PubMedGoogle Scholar
  83. 83.
    Burger RA, Brady MF, Bookman MA, Fleming GF, Monk BJ, Huang H, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med. 2011;365(26):2473–83.PubMedCrossRefGoogle Scholar
  84. 84.
    Itamochi H, Kigawa J. Clinical trials and future potential of targeted therapy for ovarian cancer. Int J Clin Oncol. 2012;17(5):430–40.PubMedCrossRefGoogle Scholar
  85. 85.
    Nagengast WB, Hooge MN, van Straten EM, Kruijff S, Brouwers AH, den Dunnen WF, et al. VEGF-SPECT with (111)In-bevacizumab in stage III/IV melanoma patients. Eur J Cancer. 2011;47(10):1595–602.PubMedCrossRefGoogle Scholar
  86. 86.
    Scheer MG, Stollman TH, Boerman OC, Verrijp K, Sweep FC, Leenders WP, et al. Imaging liver metastases of colorectal cancer patients with radiolabelled bevacizumab: lack of correlation with VEGF-A expression. Eur J Cancer. 2008;44(13):1835–40.PubMedCrossRefGoogle Scholar
  87. 87.
    Cordero AB, Kwon Y, Hua X, Godwin AK. In vivo imaging and therapeutic treatments in an orthotopic mouse model of ovarian cancer. J Vis Exp 2010;(42). pii: 2125. doi: 10.3791/2125.
  88. 88.
    Richards FM, Tape CJ, Jodrell DI, Murphy G. Anti-tumour effects of a specific anti-ADAM17 antibody in an ovarian cancer model in vivo. PLoS One. 2012;7(7):e40597.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Zhao Q, Jiang H, Cao Z, Yang L, Mao H, Lipowska M. A handheld fluorescence molecular tomography system for intraoperative optical imaging of tumor margins. Med Phys. 2011;38(11):5873–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Aguirre A, Ardeshirpour Y, Sanders MM, Brewer M, Zhu Q. Potential role of coregistered photoacoustic and ultrasound imaging in ovarian cancer detection and characterization. Transl Oncol. 2011;4(1):29–37.PubMedCentralPubMedGoogle Scholar
  91. 91.
    de la Zerda A, Bodapati S, Teed R, May SY, Tabakman SM, Liu Z, et al. Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice. ACS Nano. 2012;6(6):4694–701.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Molpus KL, Kato D, Hamblin MR, Lilge L, Bamberg M, Hasan T. Intraperitoneal photodynamic therapy of human epithelial ovarian carcinomatosis in a xenograft murine model. Cancer Res. 1996;56(5):1075–82.PubMedGoogle Scholar
  93. 93.
    McCaughan Jr JS, Schellhas HF, Lomano J, Bethel BH. Photodynamic therapy of gynecologic neoplasms after presensitization with hematoporphyrin derivative. Lasers Surg Med. 1985;5(5):491–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Guyon L, Ascencio M, Collinet P, Mordon S. Photodiagnosis and photodynamic therapy of peritoneal metastasis of ovarian cancer. Photodiagnosis Photodyn Ther. 2012;9(1):16–31.PubMedCrossRefGoogle Scholar
  95. 95.
    Yoon HY, Koo H, Choi KY, Lee SJ, Kim K, Kwon IC, et al. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials. 2012;33(15):3980–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Master AM, Livingston M, Oleinick NL, Sen Gupta A. Optimization of a Nanomedicine-Based Silicon Phthalocyanine 4 Photodynamic Therapy (Pc 4-PDT) Strategy for Targeted Treatment of EGFR-Overexpressing Cancers. Mol Pharm. 2012. [Epub ahead of print].Google Scholar
  97. 97.
    Nayak TK, Regino CA, Wong KJ, Milenic DE, Garmestani K, Baidoo KE, et al. PET imaging of HER1-expressing xenografts in mice with 86Y-CHX-A″-DTPA-cetuximab. Eur J Nucl Med Mol Imaging. 2010;37(7):1368–76.PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Oude Munnink TH, Korte MA, Nagengast WB, Timmer-Bosscha H, Schroder CP, Jong JR, et al. (89)Zr-trastuzumab PET visualises HER2 downregulation by the HSP90 inhibitor NVP-AUY922 in a human tumour xenograft. Eur J Cancer. 2010;46(3):678–84.PubMedCrossRefGoogle Scholar
  99. 99.
    Heskamp S, Laverman P, Rosik D, Boschetti F, van der Graaf WT, Oyen WJ, et al. Imaging of human epidermal growth factor receptor type 2 expression with 18F-labeled affibody molecule ZHER2:2395 in a mouse model for ovarian cancer. J Nucl Med. 2012;53(1):146–53.PubMedCrossRefGoogle Scholar
  100. 100.
    Quan G, Du X, Huo T, Li X, Wei Z, Cui H, et al. Targeted molecular imaging of antigen OC183B2 in ovarian cancers using MR molecular probes. Acad Radiol. 2010;17(12):1468–76.PubMedCrossRefGoogle Scholar
  101. 101.
    Klostergaard J, Parga K, Raptis RG. Current and future applications of magnetic resonance imaging (MRI) to breast and ovarian cancer patient management. P R Health Sci J. 2010;29(3):223–31.PubMedGoogle Scholar
  102. 102.
    Sukerkar PA, MacRenaris KW, Townsend TR, Ahmed RA, Burdette JE, Meade TJ. Synthesis and biological evaluation of water-soluble progesterone-conjugated probes for magnetic resonance imaging of hormone related cancers. Bioconjug Chem. 2011;22(11):2304–16.PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Di Giorgio A, Naticchioni E, Biacchi D, Sibio S, Accarpio F, Rocco M, et al. Cytoreductive surgery (peritonectomy procedures) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) in the treatment of diffuse peritoneal carcinomatosis from ovarian cancer. Cancer. 2008;113(2):315–25.PubMedCrossRefGoogle Scholar
  104. 104.
    Deraco M, Kusamura S, Virzi S, Puccio F, Macri A, Famulari C, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy as upfront therapy for advanced epithelial ovarian cancer: multi-institutional phase-II trial. Gynecol Oncol. 2011;122(2):215–20.PubMedCrossRefGoogle Scholar
  105. 105.
    Crane LM, Themelis G, Pleijhuis RG, Harlaar NJ, Sarantopoulos A, Arts HJ, et al. Intraoperative multispectral fluorescence imaging for the detection of the sentinel lymph node in cervical cancer: a novel concept. Mol Imaging Biol. 2011;13(5):1043–9.PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Aguirre A, Guo P, Gamelin J, Yan S, Sanders MM, Brewer M, et al. Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization. J Biomed Opt. 2009;14(5):054014.PubMedCrossRefGoogle Scholar
  107. 107.
    Yang Y, Li X, Wang T, Kumavor PD, Aguirre A, Shung KK, et al. Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization. Biomed Opt Express. 2011;2(9):2551–61.PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Kamath SD, Ray S, Mahato KK. Photoacoustic spectroscopy of ovarian normal, benign, and malignant tissues: a pilot study. J Biomed Opt. 2011;16(6):067001.PubMedCrossRefGoogle Scholar
  109. 109.
    Loning M, Diddens H, Kupker W, Diedrich K, Huttmann G. Laparoscopic fluorescence detection of ovarian carcinoma metastases using 5-aminolevulinic acid-induced protoporphyrin IX. Cancer. 2004;100(8):1650–6.PubMedCrossRefGoogle Scholar
  110. 110.
    Hahn SM, Fraker DL, Mick R, Metz J, Busch TM, Smith D, et al. A phase II trial of intraperitoneal photodynamic therapy for patients with peritoneal carcinomatosis and sarcomatosis. Clin Cancer Res. 2006;12(8):2517–25.PubMedCrossRefGoogle Scholar
  111. 111.
    Hahn SM, Putt ME, Metz J, Shin DB, Rickter E, Menon C, et al. Photofrin uptake in the tumor and normal tissues of patients receiving intraperitoneal photodynamic therapy. Clin Cancer Res. 2006;12(18):5464–70.PubMedCrossRefGoogle Scholar
  112. 112.
    Wilson JJ, Jones H, Burock M, Smith D, Fraker DL, Metz J, et al. Patterns of recurrence in patients treated with photodynamic therapy for intraperitoneal carcinomatosis and sarcomatosis. Int J Oncol. 2004;24(3):711–7.PubMedGoogle Scholar
  113. 113.
    Zhong W, Celli JP, Rizvi I, Mai Z, Spring BQ, Yun SH, et al. In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring. Br J Cancer. 2009;101(12):2015–22.PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Leblond F, et al. Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications. J Photochem Photobiol B. 2010;98(1):77–94.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Lucia M. A. Crane
    • 1
    Email author
  • Rick G. Pleijhuis
    • 1
  • Marleen van Oosten
    • 1
  • Gooitzen M. van Dam
    • 1
  1. 1.Division of Surgical Oncology, Department of SurgeryBioOptical Imaging Center, University Medical Center Groningen/University of GroningenGroningenThe Netherlands

Personalised recommendations