Functions of Long Non-Coding RNAs in Non-mammalian Systems

  • Alex Tuck
  • David Tollervey


Transcription of eukaryotic genomes is pervasive, with most if not all bases transcribed. A single stretch of genomic sequence is commonly represented in numerous distinct transcripts, due to the use of alternative transcription start and termination sites, the ability of RNA polymerase II (Pol II) to transcribe in either orientation or alternative RNA processing events. The transcriptome is thus overwhelmingly complex and contains many so-called long non-coding RNAs (lncRNAs), which lack protein coding capacity. These are distinct from classically annotated classes of structural RNAs (e.g. rRNA, tRNA, snRNA, snoRNA), or the more recently discovered small regulatory RNAs (siRNA, miRNA and piRNA). In this chapter, we focus on recent advances toward understanding the functions of lncRNAs in non-mammalian systems including yeast, plants and flies. The amenability of these organisms to genetic manipulation and their short generation time has enabled rapid progress to be made, often at the mechanistic level. In mammalian cells, there is extensive crosstalk between lncRNAs and small (~21–25 nt) regulatory RNAs. However, these very small RNAs are apparently absent from the yeast Saccharomyces cerevisiae, while lncRNAs and small regulatory RNAs in Arabidopsis are transcribed by distinct, specialized polymerases. Studies in these organisms have helped define the individual contributions of lncRNAs and small RNAs, and reveal how they collaborate and compete in RNA-dependent regulatory pathways.


Transcription Start Site Transcriptional Gene Silence Histone Chaperone Upstream Activate Sequence Nascent Transcript 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by Wellcome Trust [086587 and 077248]. Work in the Wellcome Trust Centre for Cell Biology is supported by Wellcome Trust core funding [092076].


  1. Alekseyenko, A. A., Peng, S., Larschan, E., Gorchakov, A. A., Lee, O. K., Kharchenko, P., et al. (2008). A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell, 134(4), 599–609.PubMedCrossRefGoogle Scholar
  2. Arigo, J. T., Carroll, K. L., Ames, J. M., & Corden, J. L. (2006). Regulation of yeast NRD1 expression by premature transcription termination. Molecular Cell, 21(5), 641–651.PubMedCrossRefGoogle Scholar
  3. Berretta, J., Pinskaya, M., & Morillon, A. (2008). A cryptic unstable transcript mediates transcriptional trans-silencing of the Ty1 retrotransposon in Saccharomyces cerevisiae. Genes & Development, 22(5), 615–626.CrossRefGoogle Scholar
  4. Bird, A. J., Gordon, M., Eide, D. J., & Winge, D. R. (2006). Repression of ADH1 and ADH3 during zinc deficiency by Zap1-induced intergenic RNA transcripts. EMBO Journal, 25(24), 5726–5734.PubMedCrossRefGoogle Scholar
  5. Brar, G. A., Yassour, M., Friedman, N., Regev, A., Ingolia, N. T., & Weissman, J. S. (2012). High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science, 335(6068), 552–557.PubMedCrossRefGoogle Scholar
  6. Buhler, M. (2009). RNA turnover and chromatin-dependent gene silencing. Chromosoma, 118(2), 141–151.PubMedCrossRefGoogle Scholar
  7. Buhler, M., Verdel, A., & Moazed, D. (2006). Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell, 125(5), 873–886.PubMedCrossRefGoogle Scholar
  8. Buhler, M., Spies, N., Bartel, D. P., & Moazed, D. (2008). TRAMP-mediated RNA surveillance prevents spurious entry of RNAs into the Schizosaccharomyces pombe siRNA pathway. Nature Structural & Molecular Biology, 15(10), 1015–1023.CrossRefGoogle Scholar
  9. Bühler, M., Haas, W., Gygi, S. P., & Moazed, D. (2007). RNAi-dependent and -independent RNA turnover mechanisms contribute to heterochromatic gene silencing. Cell, 129(4), 707–721.PubMedCrossRefGoogle Scholar
  10. Bumgarner, S. L., Dowell, R. D., Grisafi, P., Gifford, D. K., & Fink, G. R. (2009). Toggle involving cis-interfering non-coding RNAs controls variegated gene expression in yeast. Proceedings of the National Academy of Sciences of the United States of America, 106(43), 18321–18326.PubMedCrossRefGoogle Scholar
  11. Bumgarner, S. L., Neuert, G., Voight, F. R., Symbor-Nagrabska, A., Grisafi, P., van Oudenaarden, A., et al. (2012). Single-cell analysis reveals that non-coding RNAs contribute to clonal heterogeneity by modulating transcription factor recruitment. Molecular Cell, 45, 1–13.CrossRefGoogle Scholar
  12. Camblong, J., Iglesias, N., Fickentscher, C., Dieppois, G., & Stutz, F. (2007). Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in Saccharomyces cerevisiae. Cell, 131(4), 706–717.PubMedCrossRefGoogle Scholar
  13. Camblong, J., Beyrouthy, N., Guffanti, E., Schlaepfer, G., Steinmetz, L. M., & Stutz, F. (2009). Trans-acting antisense RNAs mediate transcriptional gene cosuppression in S. cerevisiae. Genes & Development, 23(13), 1534–1545.CrossRefGoogle Scholar
  14. Cernilogar, F. M., Onorati, M. C., Kothe, G. O., Burroughs, A. M., Parsi, K. M., Breiling, A., et al. (2011). Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature, 480(7377), 391–395.PubMedCrossRefGoogle Scholar
  15. Cheung, V., Chua, G., Batada, N. N., Landry, C. R., Michnick, S. W., Hughes, T. R., et al. (2008). Chromatin- and transcription-related factors repress transcription from within coding regions throughout the Saccharomyces cerevisiae genome. PLoS Biology, 6(11), e277.PubMedCrossRefGoogle Scholar
  16. Chu, C., Qu, K., Zhong Franklin, L., Artandi Steven, E., & Chang Howard, Y. (2011). Genomic maps of long non-coding RNA occupancy reveal principles of RNA-chromatin interactions. Molecular Cell, 44(4), 667–678.PubMedCrossRefGoogle Scholar
  17. Churchman, L. S., & Weissman, J. S. (2011). Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature, 469(7330), 368–373.PubMedCrossRefGoogle Scholar
  18. Conrad, T., Cavalli, F. M. G., Vaquerizas, J. M., Luscombe, N. M., & Akhtar, A. (2012). Drosophila dosage compensation involves enhanced Pol II recruitment to male X-linked promoters. Science, 337(6095), 742–746.PubMedCrossRefGoogle Scholar
  19. Creamer, T. J., Darby, M. M., Jamonnak, N., Schaughency, P., Hao, H., Wheelan, S. J., et al. (2011). Transcriptome-wide binding sites for components of the Saccharomyces cerevisiae non-poly(A) termination pathway: Nrd1, Nab3, and Sen1. PLoS Genetics, 7(10), e1002329.PubMedCrossRefGoogle Scholar
  20. Czech, B., & Hannon, G. J. (2011). Small RNA sorting: matchmaking for Argonautes. Nature Reviews Genetics, 12(1), 19–31.PubMedCrossRefGoogle Scholar
  21. Czech, B., Malone, C. D., Zhou, R., Stark, A., Schlingeheyde, C., Dus, M., et al. (2008). An endogenous small interfering RNA pathway in Drosophila. Nature, 453(7196), 798–802.PubMedCrossRefGoogle Scholar
  22. David, L., Huber, W., Granovskaia, M., Toedling, J., Palm, C. J., Bofkin, L., et al. (2006). A high-resolution map of transcription in the yeast genome. Proceedings of the National Academy of Sciences of the United States of America, 103(14), 5320–5325.PubMedCrossRefGoogle Scholar
  23. Ding, D.-Q., Okamasa, K., Yamane, M., Tsutsumi, C., Haraguchi, T., Yamamoto, M., et al. (2012). Meiosis-specific non-coding RNA mediates robust pairing of homologous chromosomes in meiosis. Science, 336(6082), 732–736.PubMedCrossRefGoogle Scholar
  24. El-Shami, M., Pontier, D., Lahmy, S., Braun, L., Picart, C., Vega, D., et al. (2007). Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes & Development, 21(20), 2539–2544.CrossRefGoogle Scholar
  25. Enderle, D., Beisel, C., Stadler, M. B., Gerstung, M., Athri, P., & Paro, R. (2011). Polycomb preferentially targets stalled promoters of coding and non-coding transcripts. Genome Research, 21(2), 216–226.PubMedCrossRefGoogle Scholar
  26. Garcia-Martinez, J., Ayala, G., Pelechano, V., Chavez, S., Herrero, E., & Perez-Ortin, J. E. (2012). The relative importance of transcription rate, cryptic transcription and mRNA stability on shaping stress responses in yeast. Transcription, 3(1), 39–44.PubMedCrossRefGoogle Scholar
  27. Geisler, S., Lojek, L., Khalil, A. M., Baker, K. E., & Coller, J. (2012). Decapping of long non-coding RNAs regulates inducible genes. Molecular Cell, 45(3), 279–291.PubMedCrossRefGoogle Scholar
  28. Gelfand, B., Mead, J., Bruning, A., Apostolopoulos, N., Tadigotla, V., Nagaraj, V., et al. (2011). Regulated antisense transcription controls expression of cell-type-specific genes in yeast. Molecular and Cellular Biology, 31(8), 1701–1709.PubMedCrossRefGoogle Scholar
  29. Ghildiyal, M., Seitz, H., Horwich, M. D., Li, C., Du, T., Lee, S., et al. (2008). Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science, 320(5879), 1077–1081.PubMedCrossRefGoogle Scholar
  30. Granovskaia, M., Jensen, L., Ritchie, M., Toedling, J., Ning, Y., Bork, P., et al. (2010). High-resolution transcription atlas of the mitotic cell cycle in budding yeast. Genome Biology, 11(3), R24.PubMedCrossRefGoogle Scholar
  31. Gudipati, R. K., Xu, Z., Lebreton, A., Seraphin, B., Steinmetz, L. M., Jacquier, A., et al. (2012). Extensive degradation of RNA precursors by the exosome in wild-type cells. Molecular Cell, 48(3), 409–421.PubMedCrossRefGoogle Scholar
  32. Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., et al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464(7291), 1071–1076.PubMedCrossRefGoogle Scholar
  33. Haag, J. R., Ream, T. S., Marasco, M., Nicora, C. D., Norbeck, A. D., Pasa-Tolic, L., Pikaard, C. S. (2012). In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing. Molecular Cell, 48, 811–818.Google Scholar
  34. Hainer, S. J., & Martens, J. A. (2011). Identification of histone mutants that are defective for transcription-coupled nucleosome occupancy. Molecular and Cellular Biology, 31(17), 3557–3568.PubMedCrossRefGoogle Scholar
  35. Hainer, S. J., Pruneski, J. A., Mitchell, R. D., Monteverde, R. M., & Martens, J. A. (2011). Intergenic transcription causes repression by directing nucleosome assembly. Genes & Development, 25(1), 29–40.CrossRefGoogle Scholar
  36. Halic, M., & Moazed, D. (2010). Dicer-independent primal RNAs trigger RNAi and heterochromatin formation. Cell, 140(4), 504–516.PubMedCrossRefGoogle Scholar
  37. Halme, A., Bumgarner, S., Styles, C., & Fink, G. R. (2004). Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell, 116(3), 405–415.PubMedCrossRefGoogle Scholar
  38. Hasegawa, Y., Brockdorff, N., Kawano, S., Tsutui, K., Tsutui, K., & Nakagawa, S. (2010). The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Developmental Cell, 19(3), 469–476.PubMedCrossRefGoogle Scholar
  39. Hazen, S., Naef, F., Quisel, T., Gendron, J., Chen, H., Ecker, J., et al. (2009). Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays. Genome Biology, 10(2), R17.PubMedCrossRefGoogle Scholar
  40. He, X.-J., Hsu, Y.-F., Zhu, S., Wierzbicki, A. T., Pontes, O., Pikaard, C. S., et al. (2009). An effector of RNA-directed DNA methylation in Arabidopsis is an ARGONAUTE 4- and RNA-binding protein. Cell, 137(3), 498–508.PubMedCrossRefGoogle Scholar
  41. Heo, J. B., & Sung, S. (2011). Vernalization-mediated epigenetic silencing by a long intronic non-coding RNA. Science, 331(6013), 76–79.PubMedCrossRefGoogle Scholar
  42. Herr, A. J., Jensen, M. B., Dalmay, T., & Baulcombe, D. C. (2005). RNA polymerase IV directs silencing of endogenous DNA. Science, 308(5718), 118–120.PubMedCrossRefGoogle Scholar
  43. Hessle, V., von Euler, A., González de Valdivia, E., & Visa, N. (2012). Rrp6 is recruited to transcribed genes and accompanies the spliced mRNA to the nuclear pore. RNA, 18(8), 1466–1474.PubMedCrossRefGoogle Scholar
  44. Hirota, K., Miyoshi, T., Kugou, K., Hoffman, C. S., Shibata, T., & Ohta, K. (2008). Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs. Nature, 456(7218), 130–134.PubMedCrossRefGoogle Scholar
  45. Hobson, D. J., Wei, W., Steinmetz, L. M., & Svejstrup, J. Q. (2012). RNA polymerase II collision interrupts convergent transcription. Molecular Cell, 48(3), 365–374.PubMedCrossRefGoogle Scholar
  46. Hongay, C. F., Grisafi, P. L., Galitski, T., & Fink, G. R. (2006). Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell, 127(4), 735–745.PubMedCrossRefGoogle Scholar
  47. Houseley, J., & Tollervey, D. (2008). The nuclear RNA surveillance machinery: The link between ncRNAs and genome structure in budding yeast? Biochimica et Biophysica Acta (BBA): Gene Regulatory Mechanisms, 1779(4), 239–246.CrossRefGoogle Scholar
  48. Houseley, J., & Tollervey, D. (2011). Repeat expansion in the budding yeast ribosomal DNA can occur independently of the canonical homologous recombination machinery. Nucleic Acids Research, 39(20), 8778–8791.PubMedCrossRefGoogle Scholar
  49. Houseley, J., Kotovic, K., El Hage, A., & Tollervey, D. (2007). Trf4 targets ncRNAs from telomeric and rDNA spacer regions and functions in rDNA copy number control. EMBO Journal, 26(24), 4996–5006.PubMedCrossRefGoogle Scholar
  50. Houseley, J., Rubbi, L., Grunstein, M., Tollervey, D., & Vogelauer, M. (2008). A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Molecular Cell, 32(5), 685–695.PubMedCrossRefGoogle Scholar
  51. Huettel, B., Kanno, T., Daxinger, L., Aufsatz, W., Matzke, A. J., & Matzke, M. (2006). Endogenous targets of RNA-directed DNA methylation and Pol IV in Arabidopsis. EMBO Journal, 25(12), 2828–2836.PubMedCrossRefGoogle Scholar
  52. Jenks, M. H., O’Rourke, T. W., & Reines, D. (2008). Properties of an intergenic terminator and start site switch that regulate IMD2 transcription in yeast. Molecular and Cellular Biology, 28(12), 3883–3893.PubMedCrossRefGoogle Scholar
  53. Jeon, Y., & Lee Jeannie, T. (2011). YY1 tethers Xist RNA to the inactive X nucleation center. Cell, 146(1), 119–133.PubMedCrossRefGoogle Scholar
  54. Johnson, T. K., Carrington, L. B., Hallas, R. J., & McKechnie, S. W. (2009). Protein synthesis rates in Drosophila associate with levels of the hsr-omega nuclear transcript. Cell Stress Chaperones, 14(6), 569–577.PubMedCrossRefGoogle Scholar
  55. Kanhere, A., Viiri, K., Araújo, C. C., Rasaiyaah, J., Bouwman, R. D., Whyte, W. A., et al. (2010). Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Molecular Cell, 38(5), 675–688.PubMedCrossRefGoogle Scholar
  56. Kanno, T., Huettel, B., Mette, M. F., Aufsatz, W., Jaligot, E., Daxinger, L., et al. (2005). Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nature Genetics, 37(7), 761–765.PubMedCrossRefGoogle Scholar
  57. Kato, H., Goto, D. B., Martienssen, R. A., Urano, T., Furukawa, K., & Murakami, Y. (2005). RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science, 309(5733), 467–469.PubMedCrossRefGoogle Scholar
  58. Kawamura, Y., Saito, K., Kin, T., Ono, Y., Asai, K., Sunohara, T., et al. (2008). Drosophila endogenous small RNAs bind to Argonaute-2 in somatic cells. Nature, 453(7196), 793–797.PubMedCrossRefGoogle Scholar
  59. Kim, T., & Buratowski, S. (2009). Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5′ transcribed regions. Cell, 137(2), 259–272.PubMedCrossRefGoogle Scholar
  60. Kim, K.-Y., & Levin, D. (2011). Mpk1 MAPK association with the Paf1 complex blocks Sen1-mediated premature transcription termination. Cell, 144(5), 745–756.PubMedCrossRefGoogle Scholar
  61. Kim, H., Erickson, B., Luo, W., Seward, D., Graber, J. H., Pollock, D. D., et al. (2010). Gene-specific RNA polymerase II phosphorylation and the CTD code. Nature Structural & Molecular Biology, 17(10), 1279–1286.CrossRefGoogle Scholar
  62. Kim, T. S., Liu, C. L., Yassour, M., Holik, J., Friedman, N., Buratowski, S., et al. (2011). RNA polymerase mapping during stress responses reveals widespread nonproductive transcription in yeast. Genome Biology, 11(7), R75.CrossRefGoogle Scholar
  63. Kim, T., Xu, Z., Clauder-Münster, S., Steinmetz Lars, M., & Buratowski, S. (2012). Set3 HDAC mediates effects of overlapping non-coding transcription on gene induction kinetics. Cell, 150(6), 1158–1169.PubMedCrossRefGoogle Scholar
  64. Kizer, K. O., Phatnani, H. P., Shibata, Y., Hall, H., Greenleaf, A. L., & Strahl, B. D. (2005). A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Molecular and Cellular Biology, 25(8), 3305–3316.PubMedCrossRefGoogle Scholar
  65. Kuehner, J. N., & Brow, D. A. (2008). Regulation of a eukaryotic gene by GTP-dependent start site selection and transcription attenuation. Molecular Cell, 31(2), 201–211.PubMedCrossRefGoogle Scholar
  66. Lakhotia, S. C., Mallik, M., Singh, A. K., & Ray, M. (2012). The large non-coding hsromega-n transcripts are essential for thermotolerance and remobilization of hnRNPs, HP1 and RNA polymerase II during recovery from heat shock in Drosophila. Chromosoma, 121(1), 49–70.PubMedCrossRefGoogle Scholar
  67. Lardenois, A., Liu, Y., Walther, T., Chalmel, F., Evrard, B., Granovskaia, M., et al. (2011). Execution of the meiotic non-coding RNA expression program and the onset of gametogenesis in yeast require the conserved exosome subunit Rrp6. Proceedings of the National Academy of Sciences, 108(3), 1058–1063.CrossRefGoogle Scholar
  68. Larschan, E., Bishop, E. P., Kharchenko, P. V., Core, L. J., Lis, J. T., Park, P. J., et al. (2011). X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Nature, 471(7336), 115–118.PubMedCrossRefGoogle Scholar
  69. Lee, T. F., Gurazada, S. G., Zhai, J., Li, S., Simon, S. A., Matzke, M. A., et al. (2012). RNA polymerase V-dependent small RNAs in Arabidopsis originate from small, intergenic loci including most SINE repeats. Epigenetics, 7(7), 781–795.PubMedCrossRefGoogle Scholar
  70. Li, C. F., Pontes, O., El-Shami, M., Henderson, I. R., Bernatavichute, Y. V., Chan, S. W. L., et al. (2006). An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell, 126(1), 93–106.PubMedCrossRefGoogle Scholar
  71. Li, B., Jackson, J., Simon, M. D., Fleharty, B., Gogol, M., Seidel, C., et al. (2009). Histone H3 lysine 36 dimethylation (H3K36me2) is sufficient to recruit the Rpd3s histone deacetylase complex and to repress spurious transcription. Journal of Biological Chemistry, 284(12), 7970–7976.PubMedCrossRefGoogle Scholar
  72. Lin, M. F., Jungreis, I., & Kellis, M. (2011). PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics, 27(13), i275–i282.PubMedCrossRefGoogle Scholar
  73. Liu, J., Jung, C., Xu, J., Wang, H., Deng, S., Bernad, L., Arenas-Huertero, C., Chua, N. H. (2012). Genome-wide analysis uncovers regulation of long intergenic non-coding RNAs in Arabidopsis. Plant Cell, 24, 4333-4345.Google Scholar
  74. Luke, B., Panza, A., Redon, S., Iglesias, N., Li, Z., & Lingner, J. (2008). The Rat1p 5′ to 3′ exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Molecular Cell, 32(4), 465–477.PubMedCrossRefGoogle Scholar
  75. Martens, J. A., Laprade, L., & Winston, F. (2004). Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature, 429(6991), 571–574.PubMedCrossRefGoogle Scholar
  76. Martens, J. A., Wu, P. Y., & Winston, F. (2005). Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes & Development, 19(22), 2695–2704.CrossRefGoogle Scholar
  77. Martianov, I., Ramadass, A., Serra Barros, A., Chow, N., & Akoulitchev, A. (2007). Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature, 445(7128), 666–670.PubMedCrossRefGoogle Scholar
  78. Matsuda, E., & Garfinkel, D. J. (2009). Posttranslational interference of Ty1 retrotransposition by antisense RNAs. Proceedings of the National Academy of Sciences, 106(37), 15657–15662.CrossRefGoogle Scholar
  79. Meller, V. H., & Rattner, B. P. (2002). The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO Journal, 21(5), 1084–1091.PubMedCrossRefGoogle Scholar
  80. Mosher, R. A., Schwach, F., Studholme, D., & Baulcombe, D. C. (2008). PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 3145–3150.PubMedCrossRefGoogle Scholar
  81. Motamedi, M. R., Verdel, A., Colmenares, S. U., Gerber, S. A., Gygi, S. P., & Moazed, D. (2004). Two RNAi complexes, RITS and RDRC, physically interact and localize to non-coding centromeric RNAs. Cell, 119(6), 789–802.PubMedCrossRefGoogle Scholar
  82. Murray, S. C., Serra Barros, A., Brown, D. A., Dudek, P., Ayling, J., & Mellor, J. (2012). A pre-initiation complex at the 3′-end of genes drives antisense transcription independent of divergent sense transcription. Nucleic Acids Research, 40(6), 2432–2444.PubMedCrossRefGoogle Scholar
  83. Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., et al. (2008). The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 320(5881), 1344–1349.PubMedCrossRefGoogle Scholar
  84. Nam, J. W., & Bartel, D. P. (2012). Long non-coding RNAs in C. elegans. Genome Research, 22, 2529–2540.PubMedCrossRefGoogle Scholar
  85. Nechaev, S., Fargo, D. C., dos Santos, G., Liu, L., Gao, Y., & Adelman, K. (2010). Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science, 327(5963), 335–338.PubMedCrossRefGoogle Scholar
  86. Neil, H., Malabat, C., d’Aubenton-Carafa, Y., Xu, Z., Steinmetz, L. M., & Jacquier, A. (2009). Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature, 457(7232), 1038–1042.PubMedCrossRefGoogle Scholar
  87. Nishizawa, M., Komai, T., Katou, Y., Shirahige, K., Ito, T., & Toh-e, A. (2008). Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast. PLoS Biology, 6(12), e326.CrossRefGoogle Scholar
  88. Octavio, L. M., Gedeon, K., & Maheshri, N. (2009). Epigenetic and conventional regulation is distributed among activators of FLO11 allowing tuning of population-level heterogeneity in its expression. PLoS Genetics, 5(10), e1000673.PubMedCrossRefGoogle Scholar
  89. Okamura, K., Balla, S., Martin, R., Liu, N., & Lai, E. C. (2008a). Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nature Structural & Molecular Biology, 15(6), 581–590.CrossRefGoogle Scholar
  90. Okamura, K., Chung, W.-J., Ruby, J. G., Guo, H., Bartel, D. P., & Lai, E. C. (2008b). The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature, 453(7196), 803–806.PubMedCrossRefGoogle Scholar
  91. Onodera, Y., Haag, J. R., Ream, T., Costa Nunes, P., Pontes, O., & Pikaard, C. S. (2005). Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell, 120(5), 613–622.PubMedCrossRefGoogle Scholar
  92. O’Sullivan, J. M., Tan-Wong, S. M., Morillon, A., Lee, B., Coles, J., Mellor, J., et al. (2004). Gene loops juxtapose promoters and terminators in yeast. Nature Genetics, 36(9), 1014–1018.PubMedCrossRefGoogle Scholar
  93. Pauli, A., Valen, E., Lin, M. F., Garber, M., Vastenhouw, N. L., Levin, J. Z., et al. (2012). Systematic identification of long non-coding RNAs expressed during zebrafish embryogenesis. Genome Research, 22(3), 577–591.PubMedCrossRefGoogle Scholar
  94. Petruk, S., Sedkov, Y., Riley, K. M., Hodgson, J., Schweisguth, F., Hirose, S., et al. (2006). Transcription of bxd non-coding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference. Cell, 127(6), 1209–1221.PubMedCrossRefGoogle Scholar
  95. Petruk, S., Sedkov, Y., Brock, H. W., & Mazo, A. (2007). A model for initiation of mosaic HOX gene expression patterns by non-coding RNAs in early embryos. RNA Biology, 4(1), 1–6.PubMedCrossRefGoogle Scholar
  96. Pfeiffer, V., & Lingner, J. (2012). TERRA promotes telomere shortening through exonuclease 1-mediated resection of chromosome ends. PLoS Genetics, 8(6), e1002747.PubMedCrossRefGoogle Scholar
  97. Pinskaya, M., Gourvennec, S., & Morillon, A. (2009). H3 lysine 4 di- and tri-methylation deposited by cryptic transcription attenuates promoter activation. EMBO Journal, 28, 1697–1707.PubMedCrossRefGoogle Scholar
  98. Pontes, O., Li, C. F., Costa Nunes, P., Haag, J., Ream, T., Vitins, A., et al. (2006). The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell, 126(1), 79–92.PubMedCrossRefGoogle Scholar
  99. Pontes, O., Costa-Nunes, P., Vithayathil, P., & Pikaard, C. S. (2009). RNA polymerase V functions in Arabidopsis interphase heterochromatin organization independently of the 24-nt siRNA-directed DNA methylation pathway. Molecular Plant, 2(4), 700–710.PubMedCrossRefGoogle Scholar
  100. Pontier, D., Yahubyan, G., Vega, D., Bulski, A., Saez-Vasquez, J., Hakimi, M. A., et al. (2005). Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes & Development, 19(17), 2030–2040.CrossRefGoogle Scholar
  101. Prasanth, K. V., Rajendra, T. K., Lal, A. K., & Lakhotia, S. C. (2000). Omega speckles—a novel class of nuclear speckles containing hnRNPs associated with non-coding hsr-omega RNA in Drosophila. Journal of Cell Science, 113(19), 3485–3497.PubMedGoogle Scholar
  102. Purzycka, K. J., Legiewicz, M., Matsuda, E., Eizentstat, L. D., Lusvarghi, S., Saha, A., Le Grice, S. F. J., Garfinkel, D. J. (2012). Exploring Ty1 retrotransposon RNA structure within virus-like particles. Nucleic Acids Research, 41, 463-473.Google Scholar
  103. Redon, S., Reichenbach, P., & Lingner, J. (2010). The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Research, 38(17), 5797–5806.PubMedCrossRefGoogle Scholar
  104. Reyes-Turcu, F. E., Zhang, K., Zofall, M., Chen, E., & Grewal, S. I. (2011). Defects in RNA quality control factors reveal RNAi-independent nucleation of heterochromatin. Nature Structural & Molecular Biology, 18(10), 1132–1138.CrossRefGoogle Scholar
  105. Rhee, H. S., & Pugh, B. F. (2012). Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature, 483(7389), 295–301.PubMedCrossRefGoogle Scholar
  106. Rodriguez-Gil, A., Garcia-Martinez, J., Pelechano, V., Munoz-Centeno Mde, L., Geli, V., Perez-Ortin, J. E., et al. (2010). The distribution of active RNA polymerase II along the transcribed region is gene-specific and controlled by elongation factors. Nucleic Acids Research, 38(14), 4651–4664.PubMedCrossRefGoogle Scholar
  107. Schmitz, K.-M., Mayer, C., Postepska, A., & Grummt, I. (2010). Interaction of non-coding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes & Development, 24(20), 2264–2269.CrossRefGoogle Scholar
  108. Shanker, S., Job, G., George, O. L., Creamer, K. M., Shaban, A., & Partridge, J. F. (2010). Continuous requirement for the Clr4 complex but not RNAi for centromeric heterochromatin assembly in fission yeast harboring a disrupted RITS complex. PLoS Genetics, 6(10), e1001174.PubMedCrossRefGoogle Scholar
  109. Simon, M. D., Wang, C. I., Kharchenko, P. V., West, J. A., Chapman, B. A., Alekseyenko, A. A., et al. (2011). The genomic binding sites of a non-coding RNA. Proceedings of the National Academy of Sciences, 108(51), 20497–20502.CrossRefGoogle Scholar
  110. Sugiyama, T., & Sugioka-Sugiyama, R. (2011). Red1 promotes the elimination of meiosis-specific mRNAs in vegetatively growing fission yeast. EMBO Journal, 30(6), 1027–1039.PubMedCrossRefGoogle Scholar
  111. Taft, R. J., Simons, C., Nahkuri, S., Oey, H., Korbie, D. J., Mercer, T. R., et al. (2011). Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nature Structural & Molecular Biology, 17(8), 1030–1034.CrossRefGoogle Scholar
  112. Tan-Wong, S. M., Zaugg, J. B., Camblong, J., Xu, Z., Zhang, D. W., Mischo, H. E., et al. (2012). Gene loops enhance transcriptional directionality. Science, 338, 671–675.PubMedCrossRefGoogle Scholar
  113. Thebault, P., Boutin, G., Bhat, W., Rufiange, A., Martens, J., Nourani, A. (2011). Transcription regulation by the non-coding RNA SRG1 requires Spt2-dependent chromatin deposition in the wake of RNAP II. Molecular and Cellular Biology, doi: 10.1128/MCB.01083-01010.
  114. Thiebaut, M., Colin, J., Neil, H., Jacquier, A., Seraphin, B., Lacroute, F., et al. (2008). Futile cycle of transcription initiation and termination modulates the response to nucleotide shortage in S. cerevisiae. Molecular Cell, 31(5), 671–682.PubMedCrossRefGoogle Scholar
  115. Uhler, J. P., Hertel, C., & Svejstrup, J. Q. (2007). A role for non-coding transcription in activation of the yeast PHO5 gene. Proceedings of the National Academy of Sciences of the United States of America, 104(19), 8011–8016.PubMedCrossRefGoogle Scholar
  116. van Dijk, E. L., Chen, C. L., d/’Aubenton-Carafa, Y., Gourvennec, S., Kwapisz, M., Roche, V., et al. (2011). XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature, 475(7354), 114–117.PubMedCrossRefGoogle Scholar
  117. van Werven Folkert, J., Neuert, G., Hendrick, N., Lardenois, A., Buratowski, S., van Oudenaarden, A., et al. (2012). Transcription of two long non-coding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell, 150(6), 1170–1181.PubMedCrossRefGoogle Scholar
  118. Vasiljeva, L., & Buratowski, S. (2006). Nrd1 interacts with the nuclear exosome for 3′ processing of RNA polymerase II transcripts. Molecular Cell, 21(2), 239–248.PubMedCrossRefGoogle Scholar
  119. Vasiljeva, L., Kim, M., Terzi, N., Soares, L. M., & Buratowski, S. (2008). Transcription termination and RNA degradation contribute to silencing of RNA polymerase II transcription within heterochromatin. Molecular Cell, 29(3), 313–323.PubMedCrossRefGoogle Scholar
  120. Wahls, W. P., Siegel, E. R., & Davidson, M. K. (2008). Meiotic recombination hotspots of fission yeast are directed to loci that express non-coding RNA. PLoS ONE, 3(8), e2887.PubMedCrossRefGoogle Scholar
  121. Wang, X., Arai, S., Song, X., Reichart, D., Du, K., Pascual, G., et al. (2008). Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature, 454(7200), 126–130.PubMedCrossRefGoogle Scholar
  122. Wierzbicki, A. T., Haag, J. R., & Pikaard, C. S. (2008). Non-coding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell, 135(4), 635–648.PubMedCrossRefGoogle Scholar
  123. Wierzbicki, A. T., Ream, T. S., Haag, J. R., & Pikaard, C. S. (2009). RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nature Genetics, 41(5), 630–634.PubMedCrossRefGoogle Scholar
  124. Wierzbicki, A. T., Cocklin, R., Mayampurath, A., Lister, R., Rowley, M. J., Gregory, B. D., et al. (2012). Spatial and functional relationships among Pol V-associated loci, Pol IV-dependent siRNAs, and cytosine methylation in the Arabidopsis epigenome. Genes & Development, 26(16), 1825–1836.CrossRefGoogle Scholar
  125. Xu, Z., Wei, W., Gagneur, J., Perocchi, F., Clauder-Munster, S., Camblong, J., et al. (2009). Bidirectional promoters generate pervasive transcription in yeast. Nature, 457(7232), 1033–1037.PubMedCrossRefGoogle Scholar
  126. Xu, Z., Wei, W., Gagneur, J., Clauder-Munster, S., Smolik, M., Huber, W., et al. (2011). Antisense expression increases gene expression variability and locus interdependency. Molecular Systems Biology, 7, 1–10.CrossRefGoogle Scholar
  127. Yamanaka, S., Yamashita, A., Harigaya, Y., Iwata, R., & Yamamoto, M. (2010). Importance of polyadenylation in the selective elimination of meiotic mRNAs in growing S. pombe cells. EMBO Journal, 29(13), 2173–2181.PubMedCrossRefGoogle Scholar
  128. Yamanaka, S., Mehta, S., Reyes-Turcu, F. E., Zhuang, F., Fuchs, R.T., Rong, Y., Robb, G. B., Grewal, S. I. (2012). RNAi triggered by specialized machinery silences developmental genes and retrotransposons. Nature, 493, 557-560.Google Scholar
  129. Yang, L., Lin, C., Liu, W., Zhang, J., Ohgi Kenneth, A., Grinstein Jonathan, D., et al. (2011). ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell, 147(4), 773–788.PubMedCrossRefGoogle Scholar
  130. Yassour, M., Pfiffner, J., Levin, J., Adiconis, X., Gnirke, A., Nusbaum, C., et al. (2010). Strand-specific RNA sequencing reveals extensive regulated long antisense transcripts that are conserved across yeast species. Genome Biology, 11(8), R87.PubMedCrossRefGoogle Scholar
  131. Young, R. S., Marques, A. C., Tibbit, C., Haerty, W., Bassett, A. R., Liu, J. L., et al. (2012). Identification and properties of 1,119 candidate lincRNA loci in the Drosophila melanogaster genome. Genome Biology and Evolution, 4(4), 427–442.PubMedCrossRefGoogle Scholar
  132. Zhang, K., Fischer, T., Porter, R. L., Dhakshnamoorthy, J., Zofall, M., Zhou, M., et al. (2011). Clr4/Suv39 and RNA quality control factors cooperate to trigger RNAi and suppress antisense RNA. Science, 331(6024), 1624–1627.PubMedCrossRefGoogle Scholar
  133. Zhao, J., Ohsumi, T. K., Kung, J. T., Ogawa, Y., Grau, D. J., Sarma, K., et al. (2010). Genome-wide identification of polycomb-associated RNAs by RIP-seq. Molecular Cell, 40(6), 939–953.PubMedCrossRefGoogle Scholar
  134. Zheng, Q., Rowley, M. J., Bohmdorfer, G., Sandhu, D., Gregory, B. D., Wierzbicki, A. T. (2012). RNA polymerase V targets transcriptional silencing components to promoters of protein-coding genes. Plant Journal,  10.1111/tpj.12034.
  135. Zhong, X., Hale, C. J., Law, J. A., Johnson, L. M., Feng, S., Tu, A., et al. (2012). DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons. Nature Structural & Molecular Biology, 19(9), 870–875.CrossRefGoogle Scholar
  136. Zhu, Y., Rowley, M. J., Böhmdorfer, G., Wierzbicki Andrzej, T. (2012). A SWI/SNF chromatin-remodeling complex acts in non-coding RNA-mediated transcriptional silencing. Molecular Cell, 49, 298-309.Google Scholar
  137. Zofall, M., Yamanaka, S., Reyes-Turcu, F. E., Zhang, K., Rubin, C., & Grewal, S. I. (2012). RNA elimination machinery targeting meiotic mRNAs promotes facultative heterochromatin formation. Science, 335(6064), 96–100.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Wellcome Trust Centre for Cell BiologyThe University of EdinburghEdinburghScotland

Personalised recommendations