Skip to main content

Dysregulation of Long Non-coding RNAs in Human Disease

  • Chapter
  • First Online:
Molecular Biology of Long Non-coding RNAs
  • 1711 Accesses

Abstract

The mammalian genome is composed of thousands of long non-coding RNAs (lncRNAs). Accumulating evidence suggests that lncRNAs play diverse biological roles through a variety of molecular mechanisms including epigenetic, transcriptional, and post-transcriptional regulation. This chapter reviews the molecular mechanisms of lncRNAs in gene regulation and the context of various human diseases associated with dysregulation of lncRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert, M. S. (1996). Cognitive and neurobiologic markers of early Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13547–13551.

    Article  PubMed  CAS  Google Scholar 

  • Albrecht, S., et al. (1996). Variable imprinting of H19 and IGF2 in fetal cerebellum and medulloblastoma. Journal of Neuropathology and Experimental Neurology, 55(12), 1270–1276.

    Article  PubMed  CAS  Google Scholar 

  • Arron, J. R., et al. (2006). NFAT dysregulation by increased dosage of DSCR and DYRK1A on chromosome 21. Nature, 441(7093), 595–600.

    Article  PubMed  CAS  Google Scholar 

  • Banfai, B., et al. (2012). Long noncoding RNAs are rarely translated in two human cell lines. Genome Research, 22(9), 1646–1657.

    Article  PubMed  CAS  Google Scholar 

  • Barsyte-Lovejoy, D., et al. (2006). The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Research, 66(10), 5330–5337.

    Article  PubMed  CAS  Google Scholar 

  • Bei, J. X., et al. (2010). A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nature Genetics, 42(7), 599–603.

    Article  PubMed  CAS  Google Scholar 

  • Beier, D., et al. (2007). CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Research, 67(9), 4010–4015.

    Article  PubMed  CAS  Google Scholar 

  • Benetatos, L., Vartholomatos, G., & Hatzimichael, E. (2011). MEG3 imprinted gene contribution in tumorigenesis. International Journal of Cancer, 129(4), 773–779.

    Article  CAS  Google Scholar 

  • Bernard, D., et al. (2010). A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO Journal, 29(18), 3082–3093.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, B. E., et al. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489(7414), 57–74.

    Article  PubMed  CAS  Google Scholar 

  • Bertani, S., et al. (2011). The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Molecular Cell, 43(6), 1040–1046.

    Article  PubMed  CAS  Google Scholar 

  • Berteaux, N., et al. (2005). H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. Journal of Biological Chemistry, 280(33), 29625–29636.

    Article  PubMed  CAS  Google Scholar 

  • Bilguvar, K., et al. (2008). Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nature Genetics, 40(12), 1472–1477.

    Article  PubMed  CAS  Google Scholar 

  • Brandon, N. J., et al. (2009). Understanding the role of DISC in psychiatric disease and during normal development. Journal of Neuroscience, 29(41), 12768–12775.

    Article  PubMed  CAS  Google Scholar 

  • Brannan, C. I., et al. (1990). The product of the H19 gene may function as an RNA. Molecular and Cellular Biology, 10(1), 28–36.

    PubMed  CAS  Google Scholar 

  • Broadbent, H. M., et al. (2008). Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Human Molecular Genetics, 17(6), 806–814.

    Article  PubMed  CAS  Google Scholar 

  • Brown, C. J., et al. (1991). A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature, 349(6304), 38–44.

    Article  PubMed  CAS  Google Scholar 

  • Cabianca, D. S., & Gabellini, D. (2010). The cell biology of disease: FSHD: Copy number variations on the theme of muscular dystrophy. Journal of Cell Biology, 191(6), 1049–1060.

    Article  PubMed  CAS  Google Scholar 

  • Cabianca, D. S., et al. (2012). A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell, 149(4), 819–831.

    Article  PubMed  CAS  Google Scholar 

  • Cabili, M. N., et al. (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes & Development, 25(18), 1915–1927.

    Article  CAS  Google Scholar 

  • Cesana, M., et al. (2011). A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 147(2), 358–369.

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain, S. J., & Brannan, C. I. (2001). The Prader-Willi syndrome imprinting center activates the paternally expressed murine Ube3a antisense transcript but represses paternal Ube3a. Genomics, 73(3), 316–322.

    Article  PubMed  CAS  Google Scholar 

  • Chrousos, G. P., & Kino, T. (2005). Intracellular glucocorticoid signaling: A formerly simple system turns stochastic. Science STKE, 2005(304), pe48.

    Google Scholar 

  • Chu, C., et al. (2011). Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Molecular Cell, 44(4), 667–678.

    Article  PubMed  CAS  Google Scholar 

  • Chubb, J. E., et al. (2008). The DISC locus in psychiatric illness. Molecular Psychiatry, 13(1), 36–64.

    Article  PubMed  CAS  Google Scholar 

  • Daughters, R. S., et al. (2009). RNA gain-of-function in spinocerebellar ataxia type. PLoS Genet, 5(8), e1000600.

    Article  PubMed  CAS  Google Scholar 

  • De Santa, F., et al. (2010). A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biology, 8(5), e1000384.

    Article  PubMed  CAS  Google Scholar 

  • Derrien, T., et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Research, 22(9), 1775–1789.

    Article  PubMed  CAS  Google Scholar 

  • Devon, R. S., et al. (2001). Identification of polymorphisms within Disrupted in Schizophrenia 1 and Disrupted in Schizophrenia 2, and an investigation of their association with schizophrenia and bipolar affective disorder. Psychiatric Genetics, 11(2), 71–78.

    Article  PubMed  CAS  Google Scholar 

  • Dinger, M. E., et al. (2008). Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Research, 18(9), 1433–1445.

    Article  PubMed  CAS  Google Scholar 

  • Djebali, S., et al. (2012). Landscape of transcription in human cells. Nature, 489(7414), 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Dugimont, T., et al. (1998). The HTATA-less promoter is efficiently repressed by wild-type tumor suppressor gene product p53. Oncogene, 16(18), 2395–2401.

    Article  PubMed  CAS  Google Scholar 

  • Ebisuya, M., et al. (2008). Ripples from neighbouring transcription. Nature Cell Biology, 10(9), 1106–1113.

    Article  PubMed  CAS  Google Scholar 

  • Ekelund, J., et al. (2004). Replication of 1q42 linkage in Finnish schizophrenia pedigrees. Molecular Psychiatry, 9(11), 1037–1041.

    Article  PubMed  CAS  Google Scholar 

  • Faghihi, M. A., et al. (2008). Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nature Medicine, 14(7), 723–730.

    Article  PubMed  CAS  Google Scholar 

  • Gibb, E. A., et al. (2011). Human cancer long non-coding RNA transcriptomes. PLoS ONE, 6(10), e25915.

    Article  PubMed  CAS  Google Scholar 

  • Gong, C., & Maquat, L. E. (2011). lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature, 470(7333), 284–288.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, R. A., et al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464(7291), 1071–1076.

    Article  PubMed  CAS  Google Scholar 

  • Guttman, M., & Rinn, J. L. (2012). Modular regulatory principles of large non-coding RNAs. Nature, 482(7385), 339–346.

    Article  PubMed  CAS  Google Scholar 

  • Guttman, M., et al. (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 458(7235), 223–227.

    Article  PubMed  CAS  Google Scholar 

  • Guttman, M., et al. (2010). Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnology, 28(5), 503–510.

    Article  PubMed  CAS  Google Scholar 

  • Guttman, M., et al. (2011). LincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 477(7364), 295–300.

    Article  PubMed  CAS  Google Scholar 

  • Haywood, M. E., et al. (2006). Overlapping BXSB congenic intervals, in combination with microarray gene expression, reveal novel lupus candidate genes. Genes and Immunity, 7(3), 250–263.

    Article  PubMed  CAS  Google Scholar 

  • Helgadottir, A., et al. (2008). The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nature Genetics, 40(2), 217–224.

    Article  PubMed  CAS  Google Scholar 

  • Hogan, P. G., et al. (2003). Transcriptional regulation by calcium, calcineurin, and NFAT. Genes & Development, 17(18), 2205–2232.

    Article  CAS  Google Scholar 

  • Huarte, M., et al. (2010). A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 142(3), 409–419.

    Article  PubMed  CAS  Google Scholar 

  • Hung, T., et al. (2011). Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nature Genetics, 43(7), 621–629.

    Article  PubMed  CAS  Google Scholar 

  • Ji, P., et al. (2003). MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22(39), 8031–8041.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, R. (2012). Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiology of Diseases, 46(2), 245–254.

    Article  CAS  Google Scholar 

  • Johnson, R., et al. (2009). Regulation of neural macroRNAs by the transcriptional repressor REST. RNA, 15(1), 85–96.

    Article  PubMed  CAS  Google Scholar 

  • Johnstone, K. A., et al. (2006). A human imprinting centre demonstrates conserved acquisition but diverged maintenance of imprinting in a mouse model for Angelman syndrome imprinting defects. Human Molecular Genetics, 15(3), 393–404.

    Article  PubMed  CAS  Google Scholar 

  • Khalil, A. M., et al. (2009). Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences of the United States of America, 106(28), 11667–11672.

    Article  PubMed  CAS  Google Scholar 

  • Kim, T. K., et al. (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature, 465(7295), 182–187.

    Article  PubMed  CAS  Google Scholar 

  • Kino, T., et al. (2010). Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Science Signal, 3(107), ra8.

    Article  CAS  Google Scholar 

  • Kobayashi, D., et al. (2008). BACE gene deletion: Impact on behavioral function in a model of Alzheimer’s disease. Neurobiology of Aging, 29(6), 861–873.

    Article  PubMed  CAS  Google Scholar 

  • Koerner, M. V., et al. (2009). The function of non-coding RNAs in genomic imprinting. Development, 136(11), 1771–1783.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov, A. V., et al. (2005). Inhibitory effect of naked neural BC1 RNA or BC200 RNA on eukaryotic in vitro translation systems is reversed by poly(A)-binding protein (PABP). Journal of Molecular Biology, 353(1), 88–103.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. T., Davidow, L. S., & Warshawsky, D. (1999). Tsix, a gene antisense to Xist at the X-inactivation centre. Nature Genetics, 21(4), 400–404.

    Article  PubMed  CAS  Google Scholar 

  • Leeb, M., et al. (2010). Polycomb complexes act redundantly to repress genomic repeats and genes. Genes & Development, 24(3), 265–276.

    Article  CAS  Google Scholar 

  • Loewer, S., et al. (2010). Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genetics, 42(12), 1113–1117.

    Article  PubMed  CAS  Google Scholar 

  • Mao, Y. S., et al. (2011). Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nature Cell Biology, 13(1), 95–101.

    Article  PubMed  CAS  Google Scholar 

  • Mattick, J. S. (2003). Challenging the dogma: The hidden layer of non-protein-coding RNAs in complex organisms. Bioessays, 25(10), 930–939.

    Article  PubMed  CAS  Google Scholar 

  • McConlogue, L., et al. (2007). Partial reduction of BACE has dramatic effects on Alzheimer plaque and synaptic pathology in APP Transgenic Mice. Journal of Biological Chemistry, 282(36), 26326–26334.

    Article  PubMed  CAS  Google Scholar 

  • McPherson, R., et al. (2007). A common allele on chromosome associated with coronary heart disease. Science, 316(5830), 1488–1491.

    Article  PubMed  CAS  Google Scholar 

  • Mercer, T. R., et al. (2008). Specific expression of long noncoding RNAs in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 105(2), 716–721.

    Article  PubMed  CAS  Google Scholar 

  • Mercer, T. R., Dinger, M. E., & Mattick, J. S. (2009). Long non-coding RNAs: Insights into functions. Nature Reviews Genetics, 10(3), 155–159.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen, T. S., et al. (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448(7153), 553–560.

    Article  PubMed  CAS  Google Scholar 

  • Millar, J. K., et al. (2000). Disruption of two novel genes by a translocation co-segregating with schizophrenia. Human Molecular Genetics, 9(9), 1415–1423.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi, N., et al. (2000). Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes to Cells, 5(3), 211–220.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, L. E., et al. (2007). Effects of ERBB2 amplicon size and genomic alterations of chromosomes 1, 3, and 10 on patient response to trastuzumab in metastatic breast cancer. Genes, Chromosomes and Cancer, 46(4), 397–405.

    Article  PubMed  CAS  Google Scholar 

  • Moseley, M. L., et al. (2006). Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nature Genetics, 38(7), 758–769.

    Article  PubMed  CAS  Google Scholar 

  • Mourtada-Maarabouni, M., et al. (2009). GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene, 28(2), 195–208.

    Article  PubMed  CAS  Google Scholar 

  • Muller, S., et al. (2000). Genomic imprinting of IGF and H19 in human meningiomas. European Journal of Cancer, 36(5), 651–655.

    Article  PubMed  CAS  Google Scholar 

  • Mus, E., Hof, P. R., & Tiedge, H. (2007). Dendritic BC200 RNA in aging and in Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 104(25), 10679–10684.

    Article  PubMed  CAS  Google Scholar 

  • Mutsuddi, M., & Rebay, I. (2005). Molecular genetics of spinocerebellar ataxia type 8 (SCA8). RNA Biology, 2(2), 49–52.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, Y., et al. (2008). The GAS5 (growth arrest-specific transcript 5) gene fuses to BCL6 as a result of t(1;3)(q25;q27) in a patient with B-cell lymphoma. Cancer Genetics and Cytogenetics, 182(2), 144–149.

    Article  PubMed  CAS  Google Scholar 

  • Nupponen, N. N., & Carpten, J. D. (2001). Prostate cancer susceptibility genes: Many studies, many results, no answers. Cancer and Metastasis Reviews, 20(3–4), 155–164.

    Article  PubMed  CAS  Google Scholar 

  • Orom, U. A., et al. (2010). Long noncoding RNAs with enhancer-like function in human cells. Cell, 143(1), 46–58.

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke, J. R., & Swanson, M. S. (2009). Mechanisms of RNA-mediated disease. Journal of Biological Chemistry, 284(12), 7419–7423.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, R. R., et al. (2008). Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Molecular Cell, 32(2), 232–246.

    Article  PubMed  CAS  Google Scholar 

  • Pasmant, E., et al. (2007). Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: Identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Research, 67(8), 3963–3969.

    Article  PubMed  CAS  Google Scholar 

  • Ponjavic, J., et al. (2009). Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genetics, 5(8), e1000617.

    Article  PubMed  CAS  Google Scholar 

  • Ponting, C. P., Oliver, P. L., & Reik, W. (2009). Evolution and functions of long noncoding RNAs. Cell, 136(4), 629–641.

    Article  PubMed  CAS  Google Scholar 

  • Qureshi, I. A., Mattick, J. S., & Mehler, M. F. (2010). Long non-coding RNAs in nervous system function and disease. Brain Research, 1338, 20–35.

    Article  PubMed  CAS  Google Scholar 

  • Ranum, L. P., & Cooper, T. A. (2006). RNA-mediated neuromuscular disorders. Annual Review of Neuroscience, 29, 259–277.

    Article  PubMed  CAS  Google Scholar 

  • Ravache, M., et al. (2010). Transcriptional activation of REST by Spin Huntington’s disease models. PLoS ONE, 5(12), e14311.

    Article  PubMed  CAS  Google Scholar 

  • Ravasi, T., et al. (2006). Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Research, 16(1), 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Rinn, J. L., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129(7), 1311–1323.

    Article  PubMed  CAS  Google Scholar 

  • Samani, N. J., et al. (2008). Coronary artery disease-associated locus on chromosome 9p and early markers of atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(9), 1679–1683.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, C., King, R. M., & Philipson, L. (1988). Genes specifically expressed at growth arrest of mammalian cells. Cell, 54(6), 787–793.

    Article  PubMed  CAS  Google Scholar 

  • Sheik Mohamed, J., et al. (2010). Conserved long noncoding RNAs transcriptionally regulated by Octand Nanog modulate pluripotency in mouse embryonic stem cells. RNA, 16(2), 324–337.

    Article  PubMed  CAS  Google Scholar 

  • Shete, S., et al. (2009). Genome-wide association study identifies five susceptibility loci for glioma. Nature Genetics, 41(8), 899–904.

    Article  PubMed  CAS  Google Scholar 

  • Smedley, D., et al. (2000). Characterization of chromosome abnormalities in malignant melanomas. Genes, Chromosomes and Cancer, 28(1), 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C. M., & Steitz, J. A. (1998). Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Molecular and Cellular Biology, 18(12), 6897–6909.

    PubMed  CAS  Google Scholar 

  • Sone, M., et al. (2007). The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. Journal of Cell Science, 120(Pt 15), 2498–2506.

    Article  PubMed  CAS  Google Scholar 

  • Sotomaru, Y., et al. (2002). Unregulated expression of the imprinted genes H19 and Igf2r in mouse uniparental fetuses. Journal of Biological Chemistry, 277(14), 12474–12478.

    Article  PubMed  CAS  Google Scholar 

  • Stacey, S. N., et al. (2009). New common variants affecting susceptibility to basal cell carcinoma. Nature Genetics, 41(8), 909–914.

    Article  PubMed  CAS  Google Scholar 

  • Stange, D. E., et al. (2006). High-resolution genomic profiling reveals association of chromosomal aberrations on 1q and 16p with histologic and genetic subgroups of invasive breast cancer. Clinical Cancer Research, 12(2), 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Struhl, K. (2007). Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nature Structural & Molecular Biology, 14(2), 103–105.

    Article  CAS  Google Scholar 

  • Tian, D., Sun, S., & Lee, J. T. (2010). The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell, 143(3), 390–403.

    Article  PubMed  CAS  Google Scholar 

  • Tiedge, H., Chen, W., & Brosius, J. (1993). Primary structure, neural-specific expression, and dendritic location of human BC200 RNA. Journal of Neuroscience, 13(6), 2382–2390.

    PubMed  CAS  Google Scholar 

  • Tremblay, D. C., et al. (2010). Expression, tandem repeat copy number variation and stability of four macrosatellite arrays in the human genome. BMC Genomics, 11, 632.

    Article  PubMed  CAS  Google Scholar 

  • Tripathi, V., et al. (2010). The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Molecular Cell, 39(6), 925–938.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, M. C., et al. (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science, 329(5992), 689–693.

    Article  PubMed  CAS  Google Scholar 

  • Vitali, P., et al. (2010). Long nuclear-retained non-coding RNAs and allele-specific higher-order chromatin organization at imprinted snoRNA gene arrays. Journal of Cell Science, 123(Pt 1), 70–83.

    Article  PubMed  CAS  Google Scholar 

  • Wang, K. C., & Chang, H. Y. (2011). Molecular mechanisms of long noncoding RNAs. Molecular Cell, 43(6), 904–914.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., & Tiedge, H. (2004). Translational control at the synapse. Neuroscientist, 10(5), 456–466.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., et al. (2008). Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature, 454(7200), 126–130.

    Article  PubMed  CAS  Google Scholar 

  • Wang, K. C., et al. (2011). A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 472(7341), 120–124.

    Article  PubMed  CAS  Google Scholar 

  • Wapinski, O., & Chang, H. Y. (2011). Long noncoding RNAs and human disease. Trends in Cell Biology, 21(6), 354–361.

    Article  PubMed  CAS  Google Scholar 

  • Warburton, P. E., et al. (2008). Analysis of the largest tandemly repeated DNA families in the human genome. BMC Genomics, 9, 533.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J. M., et al. (2009). A 1q42 deletion involving DISC1, DISC2, and TSNAX in an autism spectrum disorder. American Journal of Medical Genetics Part A, 149A(8), 1758–1762.

    Article  PubMed  CAS  Google Scholar 

  • Willingham, A. T., et al. (2005). A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science, 309(5740), 1570–1573.

    Article  PubMed  CAS  Google Scholar 

  • Yap, K. L., et al. (2010). Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Molecular Cell, 38(5), 662–674.

    Article  PubMed  CAS  Google Scholar 

  • Yasuno, K., et al. (2010). Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nature Genetics, 42(5), 420–425.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, J. W., et al. (2002). Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation. Journal of Biological Chemistry, 277(7), 5548–5555.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, J. H., et al. (2012). LincRNA-p21 suppresses target mRNA translation. Molecular Cell, 47(4), 648–655.

    Article  PubMed  CAS  Google Scholar 

  • Zeggini, E., et al. (2007). Replication of genome-wide association signals in UK samples reveals risk loci for type diabetes. Science, 316(5829), 1336–1341.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., et al. (2003). A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. Journal of Clinical Endocrinology and Metabolism, 88(11), 5119–5126.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., et al. (2008). Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science, 322(5902), 750–756.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., et al. (2010). Genome-wide identification of polycomb-associated RNAs by RIP-seq. Molecular Cell, 40(6), 939–953.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, Z., et al. (2007). Levels of beta-secretase (BACE1) in cerebrospinal fluid as a predictor of risk in mild cognitive impairment. Archives of General Psychiatry, 64(6), 718–726.

    Article  PubMed  CAS  Google Scholar 

  • Zuccato, C., et al. (2003). Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nature Genetics, 35(1), 76–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq M. Rana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lin, N., Rana, T.M. (2013). Dysregulation of Long Non-coding RNAs in Human Disease. In: Khalil, A., Coller, J. (eds) Molecular Biology of Long Non-coding RNAs. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8621-3_5

Download citation

Publish with us

Policies and ethics