Skip to main content

Roles of Long Non-coding RNAs in X-Chromosome Inactivation

  • Chapter
  • First Online:
Molecular Biology of Long Non-coding RNAs

Abstract

Organisms in which gender is genetically encoded require a dosage compensation process to equalize sex-linked gene expression between the hetero- and homogametic sexes. In mammals, this dosage compensation process is termed X-chromosome inactivation (XCI). XCI results in the near-complete transcriptional silencing of a single X in XX females, ensuring that only one X per diploid genome remains active. Once stably inactivated, the silent state of the chosen X can be propagated in each cell for the life of the organism, making XCI a paradigm of large-scale epigenetic regulation. Since its discovery more than 50 years ago (Lyon 1961), significant progress has been made toward understanding XCI. In this chapter, we discuss recent advances in the field, with a focus on murine XCI and the essential roles that long, nonprotein coding RNAs play in regulating the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrelo, R., et al. (2009). SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells. Developmental Cell, 16(4), 507–516.

    PubMed  CAS  Google Scholar 

  • Alvarez, J. D., et al. (2000). The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes and Development, 14(5), 521–535.

    PubMed  CAS  Google Scholar 

  • Asano, K., et al. (2000). A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Genes and Development, 14(19), 2534–2546.

    PubMed  CAS  Google Scholar 

  • Augui, S., et al. (2007). Sensing X chromosome pairs before X inactivation via a novel X-pairing region of the Xic. Science, 318(5856), 1632–1636.

    PubMed  CAS  Google Scholar 

  • Bacher, C. P., et al. (2006). Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nature Cell Biology, 8(3), 293–299.

    PubMed  CAS  Google Scholar 

  • Barakat, T. S., et al. (2011). RNF12 activates Xist and is essential for X chromosome inactivation. PLoS Genetics, 7(1), e1002001.

    PubMed  CAS  Google Scholar 

  • Beletskii, A., et al. (2001). PNA interference mapping demonstrates functional domains in the noncoding RNA Xist. Proceedings of the National Academy of Sciences, 98(16), 9215–9220.

    CAS  Google Scholar 

  • Bourdet, A., et al. (2006). A SAGE approach to identifying novel trans-acting factors involved in the X inactivation process. Cytogenetic and Genome Research, 113(1–4), 325–335.

    PubMed  CAS  Google Scholar 

  • Brockdorff, N. (2011). Chromosome silencing mechanisms in X-chromosome inactivation: unknown unknowns. Development, 138(23), 5057–5065.

    PubMed  CAS  Google Scholar 

  • Brockdorff, N., et al. (1992). The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell, 71(3), 515–526.

    PubMed  CAS  Google Scholar 

  • Brown, C. J., et al. (1991a). Localization of the X inactivation centre on the human X chromosome in Xq13. Nature, 349(6304), 82–84.

    PubMed  CAS  Google Scholar 

  • Brown, C. J., et al. (1991b). A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature, 349(6304), 38–44.

    PubMed  CAS  Google Scholar 

  • Brown, C. J., et al. (1992). The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell, 71(3), 527–542.

    PubMed  CAS  Google Scholar 

  • Cabili, M. N., et al. (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes and Development, 25(18), 1915–1927.

    PubMed  CAS  Google Scholar 

  • Calabrese, J. M., et al. (2012). Site-specific silencing of regulatory elements as a mechanism of X inactivation. Cell, 151(5), 951–963.

    PubMed  CAS  Google Scholar 

  • Carrel, L., & Willard, H. F. (2005). X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature, 434(7031), 400–404.

    PubMed  CAS  Google Scholar 

  • Chadwick, B. P., & Willard, H. F. (2004). Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome. Proceedings of the National Academy of Sciences of the United States of America, 101(50), 17450–17455.

    PubMed  CAS  Google Scholar 

  • Chaumeil, J., et al. (2006). A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes and Development, 20(16), 2223–2237.

    PubMed  CAS  Google Scholar 

  • Chow, J. C., et al. (2010). LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell, 141(6), 956–969.

    PubMed  CAS  Google Scholar 

  • Chureau, C., et al. (2011). Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Human Molecular Genetics, 20(4), 705–718.

    PubMed  CAS  Google Scholar 

  • Ciaudo, C., et al. (2006). Nuclear mRNA degradation pathway(s) are implicated in Xist regulation and X chromosome inactivation. PLoS Genetics, 2(6), e94.

    PubMed  Google Scholar 

  • Clemson, C. M., et al. (1996). XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. Journal of Cell Biology, 132(3), 259–275.

    PubMed  CAS  Google Scholar 

  • Clemson, C. M., et al. (2006). The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. Proceedings of the National Academy of Sciences, 103(20), 7688–7693.

    CAS  Google Scholar 

  • Clerc, P., & Avner, P. (1998). Role of the region 3′ to Xist exon 6 in the counting process of X-chromosome inactivation. Nature Genetics, 19(3), 249–253.

    PubMed  CAS  Google Scholar 

  • Cohen, D. E., et al. (2007). The DXPas34 repeat regulates random and imprinted X inactivation. Developmental Cell, 12(1), 57–71.

    PubMed  CAS  Google Scholar 

  • Costanzi, C., & Pehrson, J. R. (1998). Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature, 393(6685), 599–601.

    PubMed  CAS  Google Scholar 

  • Cotton, A. M., et al. (2011). Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation. Human Genetics, 130(2), 187–201.

    PubMed  CAS  Google Scholar 

  • Courtier, B., Heard, E., & Avner, P. (1995). Xce haplotypes show modified methylation in a region of the active X chromosome lying 3′ to Xist. Proceedings of the National Academy of Sciences, 92(8), 3531–3535.

    CAS  Google Scholar 

  • Csankovszki, G., et al. (1999). Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nature Genetics, 22(4), 323–324.

    PubMed  CAS  Google Scholar 

  • de Belle, I., Cai, S., & Kohwi-Shigematsu, T. (1998). The genomic sequences bound to special AT-rich sequence-binding protein 1 (SATB1) in vivo in Jurkat T cells are tightly associated with the nuclear matrix at the bases of the chromatin loops. Journal of Cell Biology, 141(2), 335–348.

    PubMed  Google Scholar 

  • Debrand, E., et al. (1999). Functional analysis of the DXPas34 locus, a 3′ regulator of Xist expression. Molecular and Cellular Biology, 19(12), 8513–8525.

    PubMed  CAS  Google Scholar 

  • Derrien, T., et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Research, 22(9), 1775–1789.

    PubMed  CAS  Google Scholar 

  • Dixon, J. R., et al. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485(7398), 376–380.

    PubMed  CAS  Google Scholar 

  • Donohoe, M. E., et al. (2007). Identification of a Ctcf cofactor, Yy1, for the X chromosome binary switch. Molecular Cell, 25(1), 43–56.

    PubMed  CAS  Google Scholar 

  • Donohoe, M. E., et al. (2009). The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting. Nature, 460(7251), 128–132.

    PubMed  CAS  Google Scholar 

  • Dunham, I., et al. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489(7414), 57–74.

    PubMed  CAS  Google Scholar 

  • Duthie, S. M., et al. (1999). Xist RNA exhibits a banded localization on the inactive X chromosome and is excluded from autosomal material in cis. Human Molecular Genetics, 8(2), 195–204.

    PubMed  CAS  Google Scholar 

  • Fujita, P. A. et al. (2010). The UCSC Genome Browser database: update 2011. Nucleic Acids Research, 40, D918–D923.

    Google Scholar 

  • Gontan, C., et al. (2012). RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation. Nature, 485(7398), 386–390.

    PubMed  CAS  Google Scholar 

  • Grant, J., et al. (2012). Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. Nature, 487(7406), 254–258.

    PubMed  CAS  Google Scholar 

  • Gribnau, J., et al. (2005). X chromosome choice occurs independently of asynchronous replication timing. Journal of Cell Biology, 168(3), 365–373.

    PubMed  CAS  Google Scholar 

  • Guttman, M., & Rinn, J. L. (2012). Modular regulatory principles of large non-coding RNAs. Nature, 482(7385), 339–346.

    PubMed  CAS  Google Scholar 

  • Hasegawa, Y., et al. (2010). The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Developmental Cell, 19(3), 469–476.

    PubMed  CAS  Google Scholar 

  • Heard, E., et al. (1993). Physical mapping and YAC contig analysis of the region surrounding Xist on the mouse X chromosome. Genomics, 15(3), 559–569.

    PubMed  CAS  Google Scholar 

  • Heard, E., et al. (1999). Xist yeast artificial chromosome transgenes function as X-inactivation centers only in multicopy arrays and not as single copies. Molecular and Cellular Biology, 19(4), 3156–3166.

    PubMed  CAS  Google Scholar 

  • Helbig, R., & Fackelmayer, F. O. (2003). Scaffold attachment factor A (SAF-A) is concentrated in inactive X chromosome territories through its RGG domain. Chromosoma, 112(4), 173–182.

    PubMed  CAS  Google Scholar 

  • Hoki, Y., et al. (2009). A proximal conserved repeat in the Xist gene is essential as a genomic element for X-inactivation in mouse. Development, 136(1), 139–146.

    PubMed  CAS  Google Scholar 

  • Hong, Y. K., Ontiveros, S. D., & Strauss, W. M. (2000). A revision of the human XIST gene organization and structural comparison with mouse Xist. Mammalian Genome, 11(3), 220–224.

    PubMed  CAS  Google Scholar 

  • Houseley, J., & Tollervey, D. (2009). The many pathways of RNA degradation. Cell, 136(4), 763–776.

    PubMed  CAS  Google Scholar 

  • Jeon, Y., & Lee, J. T. (2011). YY1 Tethers Xist RNA to the inactive X nucleation center. Cell, 146(1), 119–133.

    PubMed  CAS  Google Scholar 

  • Jonkers, I., et al. (2008). Xist RNA is confined to the nuclear territory of the silenced X chromosome throughout the cell cycle. Molecular and Cellular Biology, 28(18), 5583–5594.

    PubMed  CAS  Google Scholar 

  • Jonkers, I., et al. (2009). RNF12 is an X-Encoded dose-dependent activator of X chromosome inactivation. Cell, 139(5), 999–1011.

    PubMed  CAS  Google Scholar 

  • Kalantry, S., et al. (2006). The Polycomb group protein Eed protects the inactive X-chromosome from differentiation-induced reactivation. Nature Cell Biology, 8(2), 195–202.

    PubMed  CAS  Google Scholar 

  • Kalantry, S., et al. (2009). Evidence of Xist RNA-independent initiation of mouse imprinted X-chromosome inactivation. Nature, 460(7255), 647–651.

    PubMed  CAS  Google Scholar 

  • Kim, T. K., et al. (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature, 465(7295), 182–187.

    PubMed  CAS  Google Scholar 

  • Kohlmaier, A., et al. (2004). A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biology, 2(7), E171.

    PubMed  Google Scholar 

  • Kucera, K. S., et al. (2011). Allele-specific distribution of RNA polymerase II on female X chromosomes. Human Molecular Genetics, 20(20), 3964–3973.

    PubMed  CAS  Google Scholar 

  • Lahn, B. T., & Page, D. C. (1999). Four evolutionary strata on the human X chromosome. Science, 286(5441), 964–967.

    PubMed  CAS  Google Scholar 

  • Lee, J. T. (2000). Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell, 103(1), 17–27.

    PubMed  CAS  Google Scholar 

  • Lee, J. T. (2002). Homozygous Tsix mutant mice reveal a sex-ratio distortion and revert to random X-inactivation. Nature Genetics, 32(1), 195–200.

    PubMed  CAS  Google Scholar 

  • Lee, J. T. (2005). Regulation of X-chromosome counting by Tsix and Xite sequences. Science, 309(5735), 768–771.

    PubMed  CAS  Google Scholar 

  • Lee, J. T., & Lu, N. (1999). Targeted mutagenesis of Tsix leads to nonrandom X inactivation. Cell, 99(1), 47–57.

    PubMed  CAS  Google Scholar 

  • Lee, J. T., et al. (1996). A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell, 86(1), 83–94.

    PubMed  CAS  Google Scholar 

  • Lee, J. T., Davidow, L. S., & Warshawsky, D. (1999). Tsix, a gene antisense to Xist at the X-inactivation centre. Nature Genetics, 21(4), 400–404.

    PubMed  CAS  Google Scholar 

  • Livernois, A. M., Graves, J. A., & Waters, P. D. (2012). The origin and evolution of vertebrate sex chromosomes and dosage compensation. Heredity (Edinburgh), 108(1), 50–58.

    CAS  Google Scholar 

  • Luikenhuis, S., Wutz, A., & Jaenisch, R. (2001). Antisense transcription through the Xist locus mediates Tsix function in embryonic stem cells. Molecular and Cellular Biology, 21(24), 8512–8520.

    PubMed  CAS  Google Scholar 

  • Lyon, M. F. (1961). Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature, 190, 372–373.

    PubMed  CAS  Google Scholar 

  • Lyon, M. F. (1998). X-chromosome inactivation: a repeat hypothesis. Cytogenetics and Cell Genetics, 80(1–4), 133–137.

    PubMed  CAS  Google Scholar 

  • Lyon, M. F., Searle A. G., & International Committee on Standardized Genetic Nomenclature for Mice (1989). Genetic variants and strains of the laboratory mouse (2nd ed.). New York : Oxford University Press , Stuttgart : G. Fischer Verlag, xiii, 876 p.

    Google Scholar 

  • Ma, M., & Strauss, W. M. (2005). Analysis of the Xist RNA isoforms suggests two distinctly different forms of regulation. Mammalian Genome, 16(6), 391–404.

    PubMed  CAS  Google Scholar 

  • Mak, W., et al. (2002). Mitotically stable association of polycomb group proteins eed and enx1 with the inactive x chromosome in trophoblast stem cells. Current Biology, 12(12), 1016–1020.

    PubMed  CAS  Google Scholar 

  • Mak, W., et al. (2004). Reactivation of the paternal X chromosome in early mouse embryos. Science, 303(5658), 666–669.

    PubMed  CAS  Google Scholar 

  • Marahrens, Y., et al. (1997). Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes and Development, 11(2), 156–166.

    PubMed  CAS  Google Scholar 

  • Masui, O., et al. (2011). Live-cell chromosome dynamics and outcome of X chromosome pairing events during ES cell differentiation. Cell, 145(3), 447–458.

    PubMed  CAS  Google Scholar 

  • McMahon, A., Fosten, M., & Monk, M. (1983). X-chromosome inactivation mosaicism in the three germ layers and the germ line of the mouse embryo. Journal of Embryology and Experimental Morphology, 74, 207–220.

    PubMed  CAS  Google Scholar 

  • Memili, E., et al. (2001). Murine Xist RNA isoforms are different at their 3′ ends: a role for differential polyadenylation. Gene, 266(1–2), 131–137.

    PubMed  CAS  Google Scholar 

  • Mlynarczyk-Evans, S., et al. (2006). X chromosomes alternate between two states prior to random X-inactivation. PLoS Biology, 4(6), e159.

    PubMed  Google Scholar 

  • Monkhorst, K., et al. (2008). X inactivation counting and choice is a stochastic process: evidence for involvement of an X-linked activator. Cell, 132(3), 410–421.

    PubMed  CAS  Google Scholar 

  • Montagutelli, X. (2000). Effect of the genetic background on the phenotype of mouse mutations. Journal of the American Society of Nephrology, 11(Suppl 16), S101–S105.

    PubMed  Google Scholar 

  • Moreira de Mello, J. C. et al. (2010). Random X inactivation and extensive mosaicism in human placenta revealed by analysis of allele-specific gene expression along the X chromosome. PLoS ONE, 5(6) p. e10947.

    Google Scholar 

  • Morey, C., et al. (2001). Tsix-mediated repression of Xist accumulation is not sufficient for normal random X inactivation. Human Molecular Genetics, 10(13), 1403–1411.

    PubMed  CAS  Google Scholar 

  • Namekawa, S. H., et al. (2010). Two-step imprinted X inactivation: repeat versus genic silencing in the mouse. Molecular and Cellular Biology, 30(13), 3187–3205.

    PubMed  CAS  Google Scholar 

  • Navarro, P., et al. (2005). Tsix transcription across the Xist gene alters chromatin conformation without affecting Xist transcription: implications for X-chromosome inactivation. Genes and Development, 19(12), 1474–1484.

    PubMed  CAS  Google Scholar 

  • Navarro, P., et al. (2008). Molecular coupling of Xist regulation and pluripotency. Science, 321(5896), 1693–1695.

    PubMed  CAS  Google Scholar 

  • Nesterova, T. B., et al. (2001). Characterization of the genomic Xist locus in rodents reveals conservation of overall gene structure and tandem repeats but rapid evolution of unique sequence. Genome Research, 11(5), 833–849.

    PubMed  CAS  Google Scholar 

  • Newall, A. E., et al. (2001). Primary non-random X inactivation associated with disruption of Xist promoter regulation. Human Molecular Genetics, 10(6), 581–589.

    PubMed  CAS  Google Scholar 

  • Nora, E. P., et al. (2012). Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature, 485(7398), 381–385.

    PubMed  CAS  Google Scholar 

  • Ogawa, Y., & Lee, J. T. (2003). Xite, X-inactivation intergenic transcription elements that regulate the probability of choice. Molecular Cell, 11(3), 731–743.

    PubMed  CAS  Google Scholar 

  • Ohhata, T., et al. (2006). Tsix-deficient X chromosome does not undergo inactivation in the embryonic lineage in males: implications for Tsix-independent silencing of Xist. Cytogenetic and Genome Research, 113(1–4), 345–349.

    PubMed  CAS  Google Scholar 

  • Ohhata, T., et al. (2008). Crucial role of antisense transcription across the Xist promoter in Tsix-mediated Xist chromatin modification. Development, 135(2), 227–235.

    PubMed  CAS  Google Scholar 

  • Okamoto, I., et al. (2004). Epigenetic dynamics of imprinted X inactivation during early mouse development. Science, 303(5658), 644–649.

    PubMed  CAS  Google Scholar 

  • Okamoto, I., et al. (2005). Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature, 438(7066), 369–373.

    PubMed  CAS  Google Scholar 

  • Okamoto, I., et al. (2012). Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature, 472(7343), 370–374.

    Google Scholar 

  • Ostertag, E. M., & Kazazian, H. H, Jr. (2001). Biology of mammalian L1 retrotransposons. Annual Review of Genetics, 35, 501–538.

    PubMed  CAS  Google Scholar 

  • Panning, B., & Jaenisch, R. (1996). DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes and Development, 10(16), 1991–2002.

    PubMed  CAS  Google Scholar 

  • Panning, B., Dausman, J., & Jaenisch, R. (1997). X chromosome inactivation is mediated by Xist RNA stabilization. Cell, 90(5), 907–916.

    PubMed  CAS  Google Scholar 

  • Patrat, C., et al. (2009). Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice. Proceedings of the National Academy of Sciences of the United States of America, 106(13), 5198–5203.

    PubMed  CAS  Google Scholar 

  • Penny, G. D., et al. (1996). Requirement for Xist in X chromosome inactivation. Nature, 379(6561), 131–137.

    PubMed  CAS  Google Scholar 

  • Plath, K., et al. (2003). Role of histone H3 lysine 27 methylation in X inactivation. Science, 300(5616), 131–135.

    PubMed  CAS  Google Scholar 

  • Popova, B. C., et al. (2006). Attenuated spread of X-inactivation in an X;autosome translocation. Proceedings of the National Academy of Sciences, 103(20), 7706–7711.

    CAS  Google Scholar 

  • Powell, C. M. (2005). Sex chromosome and sex chromosome abnormalities. In S. Gersen & M. Keagle (Eds.), The Principles of Clinical Cytogenetics, III p. 207–246.

    Google Scholar 

  • Pullirsch, D., et al. (2010). The trithorax group protein Ash2 l and Saf-A are recruited to the inactive X chromosome at the onset of stable X inactivation. Development, 137(6), 935–943.

    PubMed  CAS  Google Scholar 

  • Rastan, S. (1982). Timing of X-chromosome inactivation in postimplantation mouse embryos. Journal of Embryology and Experimental Morphology, 71, 11–24.

    PubMed  CAS  Google Scholar 

  • Rastan, S. (1994). X chromosome inactivation and the Xist gene. Current Opinion in Genetics and Development, 4(2), 292–297.

    PubMed  CAS  Google Scholar 

  • Rastan, S., & Brown, S. D. (1990). The search for the mouse X-chromosome inactivation centre. Genetical Research, 56(2–3), 99–106.

    PubMed  CAS  Google Scholar 

  • Royce-Tolland, M. E., et al. (2010). The A-repeat links ASF/SF2-dependent Xist RNA processing with random choice during X inactivation. Nature Structural and Molecular Biology, 17(8), 948–954.

    PubMed  CAS  Google Scholar 

  • Sado, T., et al. (2001). Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development, 128(8), 1275–1286.

    PubMed  CAS  Google Scholar 

  • Sado, T., Li, E., & Sasaki, H. (2002). Effect of TSIX disruption on XIST expression in male ES cells. Cytogenetic and Genome Research, 99(1–4), 115–118.

    PubMed  CAS  Google Scholar 

  • Sado, T., Hoki, Y., & Sasaki, H. (2005). Tsix silences Xist through modification of chromatin structure. Developmental Cell, 9(1), 159–165.

    PubMed  CAS  Google Scholar 

  • Sado, T., Hoki, Y., & Sasaki, H. (2006). Tsix defective in splicing is competent to establish Xist silencing. Development, 133(24), 4925–4931.

    PubMed  CAS  Google Scholar 

  • Sarma, K., et al. (2010). Locked nucleic acids (LNAs) reveal sequence requirements and kinetics of Xist RNA localization to the X chromosome. Proceedings of the National Academy of Sciences, 107(51), 22196–22201.

    CAS  Google Scholar 

  • Senner, C. E., et al. (2011). Disruption of a conserved region of Xist exon 1 impairs Xist RNA localisation and X-linked gene silencing during random and imprinted X chromosome inactivation. Development, 138(8), 1541–1550.

    PubMed  CAS  Google Scholar 

  • Sharman, G. B. (1971). Late DNA replication in the paternally derived X chromosome of female kangaroos. Nature, 230(5291), 231–232.

    PubMed  CAS  Google Scholar 

  • Sheardown, S. A., et al. (1997). Stabilization of Xist RNA mediates initiation of X chromosome inactivation. Cell, 91(1), 99–107.

    PubMed  CAS  Google Scholar 

  • Shin, J., et al. (2010). Maternal Rnf12/RLIM is required for imprinted X-chromosome inactivation in mice. Nature, 467(7318), 977–981.

    PubMed  CAS  Google Scholar 

  • Silva, J., et al. (2003). Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Developmental Cell, 4(4), 481–495.

    PubMed  CAS  Google Scholar 

  • Song, L., et al. (2011). Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Research, 21(10), 1757–1767.

    PubMed  CAS  Google Scholar 

  • Stavropoulos, N., Rowntree, R. K., & Lee, J. T. (2005). Identification of developmentally specific enhancers for Tsix in the regulation of X chromosome inactivation. Molecular and Cellular Biology, 25(7), 2757–2769.

    PubMed  CAS  Google Scholar 

  • Sugimoto, M., & Abe, K. (2007). X chromosome reactivation initiates in nascent primordial germ cells in mice. PLoS Genetics, 3(7), e116.

    PubMed  Google Scholar 

  • Tada, T., et al. (2000). Imprint switching for non-random X-chromosome inactivation during mouse oocyte growth. Development, 127(14), 3101–3105.

    PubMed  CAS  Google Scholar 

  • Takagi, N., & Sasaki, M. (1975). Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature, 256(5519), 640–642.

    PubMed  CAS  Google Scholar 

  • Tang, Y. A., et al. (2010). Efficiency of Xist-mediated silencing on autosomes is linked to chromosomal domain organisation. Epigenetics Chromatin, 3(1), 10.

    PubMed  Google Scholar 

  • Tattermusch, A., & Brockdorff, N. (2011). A scaffold for X chromosome inactivation. Human Genetics, 130, pp. 247–253.

    Google Scholar 

  • Tian, D., Sun, S., & Lee, J. T. (2010). The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell, 143(3), 390–403.

    PubMed  CAS  Google Scholar 

  • Vallot, C., et al. (2013). XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells. Nature Genetics, 45(3), 239–241.

    PubMed  CAS  Google Scholar 

  • Vigneau, S., et al. (2006). An essential role for the DXPas34 tandem repeat and Tsix transcription in the counting process of X chromosome inactivation. Proceedings of the National Academy of Sciences, 103(19), 7390–7395.

    CAS  Google Scholar 

  • Wake, N., Takagi, N., & Sasaki, M. (1976). Non-random inactivation of X chromosome in the rat yolk sac. Nature, 262(5569), 580–581.

    PubMed  CAS  Google Scholar 

  • Wang, X. et al. (2012). Random X inactivation in the mule and horse placenta. Genome Research, 22(10) pp. 1855–1863.

    Google Scholar 

  • Webb, S., de Vries, T. J., & Kaufman, M. H. (1992). The differential staining pattern of the X chromosome in the embryonic and extraembryonic tissues of postimplantation homozygous tetraploid mouse embryos. Genetical Research, 59(3), 205–214.

    PubMed  CAS  Google Scholar 

  • West, J. D., et al. (1977). Preferential expression of the maternally derived X chromosome in the mouse yolk sac. Cell, 12(4), 873–882.

    PubMed  CAS  Google Scholar 

  • Williams, L. H., et al. (2011). Transcription precedes loss of Xist coating and depletion of H3K27me3 during X-chromosome reprogramming in the mouse inner cell mass. Development, 138(10), 2049–2057.

    PubMed  CAS  Google Scholar 

  • Wutz, A., & Jaenisch, R. (2000). A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Molecular Cell, 5(4), 695–705.

    PubMed  CAS  Google Scholar 

  • Wutz, A., Rasmussen, T. P., & Jaenisch, R. (2002). Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nature Genetics, 30(2), 167–174.

    PubMed  CAS  Google Scholar 

  • Xi, H., et al. (2007). Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genetics, 3(8), e136.

    PubMed  Google Scholar 

  • Xu, N., Tsai, C. L., & Lee, J. T. (2006). Transient homologous chromosome pairing marks the onset of X inactivation. Science, 311(5764), 1149–1152.

    PubMed  CAS  Google Scholar 

  • Xu, N., et al. (2007). Evidence that homologous X-chromosome pairing requires transcription and Ctcf protein. Nature Genetics, 39(11), 1390–1396.

    PubMed  CAS  Google Scholar 

  • Xue, F., et al. (2002). Aberrant patterns of X chromosome inactivation in bovine clones. Nature Genetics, 31(2), 216–220.

    PubMed  CAS  Google Scholar 

  • Yang, F., et al. (2010). Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Research, 20(5), 614–622.

    PubMed  CAS  Google Scholar 

  • Zhao, J., et al. (2008). Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science, 322(5902), 750–756.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mauro Calabrese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Calabrese, J.M., Magnuson, T. (2013). Roles of Long Non-coding RNAs in X-Chromosome Inactivation. In: Khalil, A., Coller, J. (eds) Molecular Biology of Long Non-coding RNAs. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8621-3_3

Download citation

Publish with us

Policies and ethics