Skip to main content

Regulation of Eukaryotic Cell Differentiation by Long Non-coding RNAs

  • Chapter
  • First Online:
Molecular Biology of Long Non-coding RNAs

Abstract

Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides that do not have functional protein-coding capacity. They can regulate gene expression by affecting the transcription, translation, and stability of mRNA targets through diverse mechanisms. Dozens of eukaryotic lncRNAs have been functionally characterized to date, and they have been associated with important cellular processes such as meiosis, pluripotency, apoptosis, and lineage specification. An emerging theme among known lncRNA functions is therefore the modulation of cell differentiation states, often in response to developmental or environmental cues. This chapter discusses current models of lncRNA function during several well-characterized cell differentiation processes, from yeast to human, highlighting recent evidence that implicate lncRNAs in the regulation of animal development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amaral, P. P., & M. B. Clark, et al. (2011). lncRNAdb: A reference database for long noncoding RNAs. Nucleic Acids Research 39(Database issue), D146–D151.

    Google Scholar 

  • Amaral, P. P., Dinger, M. E., et al. (2008). The eukaryotic genome as an RNA machine. Science, 319(5871), 1787–1789.

    PubMed  CAS  Google Scholar 

  • Amaral, P. P., & Mattick, J. S. (2008). Noncoding RNA in development. Mammalian Genome, 19(7–8), 454–492.

    PubMed  CAS  Google Scholar 

  • Anguera, M. C., Ma, W., et al. (2011). Tsx produces a long noncoding RNA and has general functions in the germline, stem cells, and brain. PLoS Genetics, 7(9), e1002248.

    PubMed  CAS  Google Scholar 

  • Banfai, B., Jia, H., et al. (2012). Long noncoding RNAs are rarely translated in two human cell lines. Genome Research, 22(9), 1646–1657.

    PubMed  CAS  Google Scholar 

  • Barlow, D. P. (2011). Genomic imprinting: A mammalian epigenetic discovery model. Annual Review of Genetics, 45, 379–403.

    PubMed  CAS  Google Scholar 

  • Beltran, M., Puig, I., et al. (2008). A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes & Development, 22(6), 756–769.

    CAS  Google Scholar 

  • Berretta, J., & Morillon, A. (2009). Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO Reports, 10(9), 973–982.

    PubMed  CAS  Google Scholar 

  • Bertani, S., Sauer, S., et al. (2011). The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Molecular Cell, 43(6), 1040–1046.

    PubMed  CAS  Google Scholar 

  • Bertone, P., Stolc, V., et al. (2004). Global identification of human transcribed sequences with genome tiling arrays. Science, 306(5705), 2242–2246.

    PubMed  CAS  Google Scholar 

  • Birney, E., Stamatoyannopoulos, J. A., et al. (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447(7146), 799–816.

    PubMed  CAS  Google Scholar 

  • Blackshaw, S., Harpavat, S., et al. (2004). Genomic analysis of mouse retinal development. PLoS Biology, 2(9), E247.

    PubMed  Google Scholar 

  • Bond, A. M., Vangompel, M. J., et al. (2009). Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nature Neuroscience, 12(8), 1020–1027.

    PubMed  CAS  Google Scholar 

  • Brannan, C. I., Dees, E. C., et al. (1990). The product of the H19 gene may function as an RNA. Molecular and Cellular Biology, 10(1), 28–36.

    PubMed  CAS  Google Scholar 

  • Braun, T., & Gautel, M. (2011). Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nature Reviews Molecular Cell Biology, 12(6), 349–361.

    PubMed  CAS  Google Scholar 

  • Brockdorff, N., Ashworth, A., et al. (1992). The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell, 71(3), 515–526.

    PubMed  CAS  Google Scholar 

  • Brown, C. J., Hendrich, B. D., et al. (1992). The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell, 71(3), 527–542.

    PubMed  CAS  Google Scholar 

  • Cabianca, D. S., Casa, V., et al. (2012). A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell, 149(4), 819–831.

    PubMed  CAS  Google Scholar 

  • Cabili, M. N., Trapnell, C., et al. (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes & Development, 25(18), 1915–1927.

    CAS  Google Scholar 

  • Carninci, P., Kasukawa, T., et al. (2005). The transcriptional landscape of the mammalian genome. Science, 309(5740), 1559–1563.

    PubMed  CAS  Google Scholar 

  • Cesana, M., Cacchiarelli, D., et al. (2011). A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 147(2), 358–369.

    PubMed  CAS  Google Scholar 

  • Chakraborty, D., Kappei, D., et al. (2012). Combined RNAi and localization for functionally dissecting long noncoding RNAs. Nature Methods, 9(4), 360–362.

    PubMed  CAS  Google Scholar 

  • Chen, H. M., Rosebrock, A. P., et al. (2012). Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe. PLoS ONE, 7(1), e29917.

    PubMed  CAS  Google Scholar 

  • Chooniedass-Kothari, S., Emberley, E., et al. (2004). The steroid receptor RNA activator is the first functional RNA encoding a protein. FEBS Letters, 566(1–3), 43–47.

    PubMed  CAS  Google Scholar 

  • Chu, C., Qu, K., et al. (2011). Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Molecular Cell, 44(4), 667–678.

    PubMed  CAS  Google Scholar 

  • Clemson, C. M., Hutchinson, J. N., et al. (2009). An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Molecular Cell, 33(6), 717–726.

    PubMed  CAS  Google Scholar 

  • Cocquet, J., Pannetier, M., et al. (2005). Sense and antisense Foxl2 transcripts in mouse. Genomics, 85(5), 531–541.

    PubMed  CAS  Google Scholar 

  • Conrad, T., & Akhtar, A. (2011). Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription. Nature Reviews Genetics, 13(2), 123–134.

    Google Scholar 

  • David, L., Huber, W., et al. (2006). A high-resolution map of transcription in the yeast genome. Proceedings of the National Academy of Science U S A, 103(14), 5320–5325.

    CAS  Google Scholar 

  • De Santa, F., Barozzi, I., et al. (2010). A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biology, 8(5), e1000384.

    PubMed  Google Scholar 

  • Derrien, T., Johnson, R., et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Research, 22(9), 1775–1789.

    PubMed  CAS  Google Scholar 

  • Diez-Roux, G., Banfi, S., et al. (2011). A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biology, 9(1), e1000582.

    PubMed  CAS  Google Scholar 

  • Ding, D. Q., Okamasa, K., et al. (2012a). Meiosis-specific noncoding RNA mediates robust pairing of homologous chromosomes in meiosis. Science, 336(6082), 732–736.

    PubMed  CAS  Google Scholar 

  • Ding, J., Lu, Q., et al. (2012b). A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proceedings of the National Academy of Science USA, 109(7), 2654–2659.

    CAS  Google Scholar 

  • Dinger, M. E., Amaral, P. P., et al. (2008a). Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Research, 18(9), 1433–1445.

    PubMed  CAS  Google Scholar 

  • Dinger, M. E., Pang, K. C., et al. (2008b). Differentiating protein-coding and noncoding RNA: Challenges and ambiguities. PLoS Computational Biology, 4(11), e1000176.

    PubMed  Google Scholar 

  • Duret, L., Chureau, C., et al. (2006). The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science, 312(5780), 1653–1655.

    PubMed  CAS  Google Scholar 

  • Ebisuya, M., Yamamoto, T., et al. (2008). Ripples from neighbouring transcription. Nature Cell Biology, 10(9), 1106–1113.

    PubMed  CAS  Google Scholar 

  • Eissmann, M., & Gutschner, T. et al. (2012). Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biology, 9(8), 1076–1087.

    Google Scholar 

  • Feng, J., Bi, C., et al. (2006). The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes & Development, 20(11), 1470–1484.

    CAS  Google Scholar 

  • Franco-Zorrilla, J. M., Valli, A., et al. (2007a). Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics, 39(8), 1033–1037.

    PubMed  CAS  Google Scholar 

  • Franco-Zorrilla, J. M., Valli, A., et al. (2007b). Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics, 39(8), 1033–1037.

    PubMed  CAS  Google Scholar 

  • Gabory, A., Jammes, H., et al. (2010). The H19 locus: role of an imprinted non-coding RNA in growth and development. BioEssays, 32(6), 473–480.

    PubMed  CAS  Google Scholar 

  • Galindo, M. I., Pueyo, J. I., et al. (2007). Peptides encoded by short ORFs control development and define a new eukaryotic gene family. PLoS Biology, 5(5), e106.

    PubMed  Google Scholar 

  • Gelfand, B., Mead, J., et al. (2011). Regulated antisense transcription controls expression of cell-type-specific genes in yeast. Molecular and Cellular Biology, 31(8), 1701–1709.

    PubMed  CAS  Google Scholar 

  • Ghildiyal, M., & Zamore, P. D. (2009). Small silencing RNAs: An expanding universe. Nature Reviews Genetics, 10(2), 94–108.

    PubMed  CAS  Google Scholar 

  • Ginger, M. R., Gonzalez-Rimbau, M. F., et al. (2001). Persistent changes in gene expression induced by estrogen and progesterone in the rat mammary gland. Molecular Endocrinology, 15(11), 1993–2009.

    PubMed  CAS  Google Scholar 

  • Ginger, M. R., Shore, A. N., et al. (2006). A noncoding RNA is a potential marker of cell fate during mammary gland development. Proceedings of the National Academy of Science USA, 103(15), 5781–5786.

    CAS  Google Scholar 

  • Gong, C., Kim, Y. K., et al. (2009). SMD and NMD are competitive pathways that contribute to myogenesis: Effects on PAX3 and myogenin mRNAs. Genes & Development, 23(1), 54–66.

    CAS  Google Scholar 

  • Gong, C., & Maquat, L. E. (2011). lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3’ UTRs via Alu elements. Nature, 470(7333), 284–288.

    PubMed  CAS  Google Scholar 

  • Gorodkin, J., & Hofacker, I. L. (2011). From structure prediction to genomic screens for novel non-coding RNAs. PLoS Computational Biology, 7(8), e1002100.

    PubMed  CAS  Google Scholar 

  • Grant, J., Mahadevaiah, S. K., et al. (2012). Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. Nature, 487(7406), 254–258.

    PubMed  CAS  Google Scholar 

  • Grunwald, D., Singer, R. H., et al. (2011). Nuclear export dynamics of RNA-protein complexes. Nature, 475(7356), 333–341.

    PubMed  Google Scholar 

  • Gupta, R. A., Shah, N., et al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464(7291), 1071–1076.

    PubMed  CAS  Google Scholar 

  • Gutschner, T., & Diederichs, S. (2012). The hallmarks of cancer: A long non-coding RNA point of view. RNA Biology, 9(6), 703–719.

    Google Scholar 

  • Guttman, M., Amit, I., et al. (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 458(7235), 223–227.

    PubMed  CAS  Google Scholar 

  • Guttman, M., Donaghey, J., et al. (2011). lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 477(7364), 295–300.

    PubMed  CAS  Google Scholar 

  • Guttman, M., Garber, M., et al. (2010). Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnology, 28(5), 503–510.

    PubMed  CAS  Google Scholar 

  • Guttman, M., & Rinn, J. L. (2012). Modular regulatory principles of large non-coding RNAs. Nature, 482(7385), 339–346.

    PubMed  CAS  Google Scholar 

  • Hanna, J. H., Saha, K., et al. (2010). Pluripotency and cellular reprogramming: Facts, hypotheses, unresolved issues. Cell, 143(4), 508–525.

    PubMed  CAS  Google Scholar 

  • He, S., Liu, S., et al. (2011). The sequence, structure and evolutionary features of HOTAIR in mammals. BMC Evolutionary Biology, 11, 102.

    PubMed  CAS  Google Scholar 

  • Hekimoglu, B., & Ringrose, L. (2009). Non-coding RNAs in polycomb/trithorax regulation. RNA Biology, 6(2), 129–137.

    PubMed  CAS  Google Scholar 

  • Heo, J. B., & Sung, S. (2011). Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science, 331(6013), 76–79.

    PubMed  CAS  Google Scholar 

  • Hongay, C. F., Grisafi, P. L., et al. (2006). Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell, 127(4), 735–745.

    PubMed  CAS  Google Scholar 

  • Hu, W., Yuan, B., et al. (2011). Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes & Development, 25(24), 2573–2578.

    CAS  Google Scholar 

  • Huarte, M., Guttman, M., et al. (2010). A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 142(3), 409–419.

    PubMed  CAS  Google Scholar 

  • Hube, F., Guo, J., et al. (2006). Alternative splicing of the first intron of the steroid receptor RNA activator (SRA) participates in the generation of coding and noncoding RNA isoforms in breast cancer cell lines. DNA and Cell Biology, 25(7), 418–428.

    PubMed  CAS  Google Scholar 

  • Hutchinson, J. N., Ensminger, A. W., et al. (2007). A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics, 8, 39.

    PubMed  Google Scholar 

  • Huttenhofer, A., Schattner, P., et al. (2005). Non-coding RNAs: Hope or hype? Trends in Genetics, 21(5), 289–297.

    PubMed  Google Scholar 

  • Ietswaart, R., Wu, Z., et al. (2012). Flowering time control: Another window to the connection between antisense RNA and chromatin. Trends in Genetics, 28(9), 445–453.

    PubMed  CAS  Google Scholar 

  • Inagaki, S., Numata, K., et al. (2005). Identification and expression analysis of putative mRNA-like non-coding RNA in Drosophila. Genes to Cells, 10(12), 1163–1173.

    PubMed  CAS  Google Scholar 

  • Ingolia, N. T., Ghaemmaghami, S., et al. (2009). Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science, 324(5924), 218–223.

    PubMed  CAS  Google Scholar 

  • Ingolia, N. T., Lareau, L. F., et al. (2011). Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell, 147(4), 789–802.

    PubMed  CAS  Google Scholar 

  • Jacob, F., & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3, 318–356.

    PubMed  CAS  Google Scholar 

  • Jacquier, A. (2009). The complex eukaryotic transcriptome: Unexpected pervasive transcription and novel small RNAs. Nature Reviews Genetics, 10(12), 833–844.

    PubMed  CAS  Google Scholar 

  • Jeggari, A., Marks, D. S., et al. (2012). miRcode: A map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics, 28(15), 2062–2063.

    PubMed  CAS  Google Scholar 

  • Jenny, A., Hachet, O., et al. (2006). A translation-independent role of oskar RNA in early Drosophila oogenesis. Development, 133(15), 2827–2833.

    PubMed  CAS  Google Scholar 

  • Jeon, Y., & Lee, J. T. (2011). YY1 tethers Xist RNA to the inactive X nucleation center. Cell, 146(1), 119–133.

    PubMed  CAS  Google Scholar 

  • Kapranov, P., Cheng, J., et al. (2007a). RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 316(5830), 1484–1488.

    PubMed  CAS  Google Scholar 

  • Kapranov, P., Willingham, A. T., et al. (2007b). Genome-wide transcription and the implications for genomic organization. Nature Reviews Genetics, 8(6), 413–423.

    PubMed  CAS  Google Scholar 

  • Karreth, F. A., Tay, Y., et al. (2011). In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell, 147(2), 382–395.

    PubMed  CAS  Google Scholar 

  • Khalil, A. M., Guttman, M., et al. (2009). Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Science USA, 106(28), 11667–11672.

    CAS  Google Scholar 

  • Kim Guisbert, K. S., Zhang, Y., et al. (2012). Meiosis-induced alterations in transcript architecture and noncoding RNA expression in S. cerevisiae. RNA, 18(6), 1142–1153.

    PubMed  Google Scholar 

  • Kim, T. K., Hemberg, M., et al. (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature, 465(7295), 182–187.

    PubMed  CAS  Google Scholar 

  • Kloc, M., Bilinski, S., et al. (2007). Organization of cytokeratin cytoskeleton and germ plasm in the vegetal cortex of Xenopus laevis oocytes depends on coding and non-coding RNAs: Three-dimensional and ultrastructural analysis. Experimental Cell Research, 313(8), 1639–1651.

    PubMed  CAS  Google Scholar 

  • Kloc, M., Wilk, K., et al. (2005). Potential structural role of non-coding and coding RNAs in the organization of the cytoskeleton at the vegetal cortex of Xenopus oocytes. Development, 132(15), 3445–3457.

    PubMed  CAS  Google Scholar 

  • Kogo, R., Shimamura, T., et al. (2011). Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Research, 71(20), 6320–6326.

    PubMed  CAS  Google Scholar 

  • Koziol, M. J., & Rinn, J. L. (2010). RNA traffic control of chromatin complexes. Current Opinion in Genetics & Development, 20(2), 142–148.

    CAS  Google Scholar 

  • Kretz, M., Webster, D. E., et al. (2012). Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes & Development, 26(4), 338–343.

    CAS  Google Scholar 

  • Lardenois, A., Liu, Y., et al. (2011). Execution of the meiotic noncoding RNA expression program and the onset of gametogenesis in yeast require the conserved exosome subunit Rrp6. Proceedings of the National Academy of Science USA, 108(3), 1058–1063.

    CAS  Google Scholar 

  • Lee, J. T. (2011). Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nature Reviews Molecular Cell Biology, 12(12), 815–826.

    PubMed  CAS  Google Scholar 

  • Leighton, P. A., Ingram, R. S., et al. (1995). Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature, 375(6526), 34–39.

    PubMed  CAS  Google Scholar 

  • Lewis, E. B. (1978). A gene complex controlling segmentation in Drosophila. Nature, 276(5688), 565–570.

    PubMed  CAS  Google Scholar 

  • Li, K., Blum, Y., et al. (2010). A noncoding antisense RNA in tie-1 locus regulates tie-1 function in vivo. Blood, 115(1), 133–139.

    PubMed  CAS  Google Scholar 

  • Li, L., Wang, X., et al. (2006). Genome-wide transcription analyses in rice using tiling microarrays. Nature Genetics, 38(1), 124–129.

    PubMed  CAS  Google Scholar 

  • Li, T., Vu, T. H., et al. (2002). An imprinted PEG1/MEST antisense expressed predominantly in human testis and in mature spermatozoa. Journal of Biological Chemistry, 277(16), 13518–13527.

    PubMed  CAS  Google Scholar 

  • Li, Y. M., Franklin, G., et al. (1998). The H19 transcript is associated with polysomes and may regulate IGF2 expression in trans. Journal of Biological Chemistry, 273(43), 28247–28252.

    PubMed  CAS  Google Scholar 

  • Lin, M. F., Deoras, A. N., et al. (2008). Performance and scalability of discriminative metrics for comparative gene identification in 12 Drosophila genomes. PLoS Computational Biology, 4(4), e1000067.

    PubMed  Google Scholar 

  • Lin, M. F., Jungreis, I., et al. (2011). PhyloCSF: A comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics, 27(13), i275–i282.

    PubMed  CAS  Google Scholar 

  • Lipovich, L., & Dachet, F. et al. (2012). Activity-dependent human brain coding/non-coding gene regulatory networks. Genetics, 192(3):1133–1148.

    Google Scholar 

  • Lipshitz, H. D., Peattie, D. A., et al. (1987). Novel transcripts from the Ultrabithorax domain of the bithorax complex. Genes & Development, 1(3), 307–322.

    CAS  Google Scholar 

  • Liu, F., Marquardt, S., et al. (2010). Targeted 3’ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science, 327(5961), 94–97.

    PubMed  CAS  Google Scholar 

  • Loewer, S., Cabili, M. N., et al. (2010). Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genetics, 42(12), 1113–1117.

    PubMed  CAS  Google Scholar 

  • Maenner, S., Blaud, M., et al. (2010). 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biology, 8(1), e1000276.

    PubMed  Google Scholar 

  • Mallo, M., Wellik, D. M., et al. (2010). Hox genes and regional patterning of the vertebrate body plan. Developmental Biology, 344(1), 7–15.

    PubMed  CAS  Google Scholar 

  • Mancini-Dinardo, D., Steele, S. J., et al. (2006). Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes & Development, 20(10), 1268–1282.

    CAS  Google Scholar 

  • Mao, Y. S., Sunwoo, H., et al. (2011). Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nature Cell Biology, 13(1), 95–101.

    PubMed  CAS  Google Scholar 

  • Marques, A. C., & Ponting, C. P. (2009). Catalogues of mammalian long noncoding RNAs: Modest conservation and incompleteness. Genome Biology, 10(11), R124.

    PubMed  Google Scholar 

  • Mattick, J. S. (2004). RNA regulation: A new genetics? Nature Reviews Genetics, 5(4), 316–323.

    PubMed  CAS  Google Scholar 

  • Meller, V. H., Wu, K. H., et al. (1997). roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell, 88(4), 445–457.

    PubMed  CAS  Google Scholar 

  • Meola, N., Pizzo, M., et al. (2012). The long noncoding RNA Vax2os1 controls the cell cycle progression of photoreceptor progenitors in the mouse retina. RNA, 18(1), 111–123.

    PubMed  CAS  Google Scholar 

  • Mercer, T. R., Dinger, M. E., et al. (2008a). Noncoding RNAs in long-term memory formation. Neuroscientist, 14(5), 434–445.

    PubMed  CAS  Google Scholar 

  • Mercer, T. R., Dinger, M. E., et al. (2009). Long non-coding RNAs: Insights into functions. Nature Reviews Genetics, 10(3), 155–159.

    PubMed  CAS  Google Scholar 

  • Mercer, T. R., Dinger, M. E., et al. (2008b). Specific expression of long noncoding RNAs in the mouse brain. Proceedings of the National Academy of Sciences USA, 105(2), 716–721.

    CAS  Google Scholar 

  • Mercer, T. R., Qureshi, I. A., et al. (2010). Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neuroscience, 11, 14.

    PubMed  Google Scholar 

  • Miura, F., Kawaguchi, N., et al. (2006). A large-scale full-length cDNA analysis to explore the budding yeast transcriptome. Proceedings of the National Academy of Sciences USA, 103(47), 17846–17851.

    CAS  Google Scholar 

  • Moran, V. A., & Perera, R. J. et al. (2012). Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Research, 40(14):6391–6400.

    Google Scholar 

  • Mortazavi, A., Williams, B. A., et al. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7), 621–628.

    PubMed  CAS  Google Scholar 

  • Nagalakshmi, U., Wang, Z., et al. (2008). The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 320(5881), 1344–1349.

    PubMed  CAS  Google Scholar 

  • Nagano, T., Mitchell, J. A., et al. (2008). The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science, 322(5908), 1717–1720.

    PubMed  CAS  Google Scholar 

  • Nakagawa, S., & Ip, J. Y. et al. (2012). Malat1 is not an essential component of nuclear speckles in mice. RNA, 18(8):1487–1499.

    Google Scholar 

  • Nakagawa, S., Naganuma, T., et al. (2011). Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. Journal of Cell Biology, 193(1), 31–39.

    PubMed  CAS  Google Scholar 

  • Nam, J. W., & Bartel, D. (2012). Long non-coding RNAs in C. elegans. Genome Research, 22(12), 2529–2540.

    Google Scholar 

  • Ng, S. Y., Johnson, R., et al. (2012). Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO Journal, 31(3), 522–533.

    PubMed  CAS  Google Scholar 

  • Novikova, I. V., Hennelly, S. P., et al. (2012). Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Research, 40(11), 5034–5051.

    PubMed  CAS  Google Scholar 

  • Okamura, K., & Lai, E. C. (2008). Endogenous small interfering RNAs in animals. Nature Reviews Molecular Cell Biology, 9(9), 673–678.

    PubMed  CAS  Google Scholar 

  • Orkin, S. H., & Zon, L. I. (2008). Hematopoiesis: An evolving paradigm for stem cell biology. Cell, 132(4), 631–644.

    PubMed  CAS  Google Scholar 

  • Orom, U. A., & Shiekhattar, R. (2011). Noncoding RNAs and enhancers: Complications of a long-distance relationship. Trends in Genetics, 27(10), 433–439.

    PubMed  CAS  Google Scholar 

  • Ozsolak, F., & Milos, P. M. (2011). RNA sequencing: Advances, challenges and opportunities. Nature Reviews Genetics, 12(2), 87–98.

    PubMed  CAS  Google Scholar 

  • Pandey, R. R., Mondal, T., et al. (2008). Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Molecular Cell, 32(2), 232–246.

    PubMed  CAS  Google Scholar 

  • Parker, B. J., Moltke, I., et al. (2011). New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. Genome Research, 21(11), 1929–1943.

    PubMed  CAS  Google Scholar 

  • Pauli, A., Rinn, J. L., et al. (2011). Non-coding RNAs as regulators of embryogenesis. Nature Reviews Genetics, 12(2), 136–149.

    PubMed  CAS  Google Scholar 

  • Pearson, J. C., Lemons, D., et al. (2005). Modulating Hox gene functions during animal body patterning. Nature Reviews Genetics, 6(12), 893–904.

    PubMed  CAS  Google Scholar 

  • Perocchi, F., & Xu, Z. Y. et al. (2007). Antisense artifacts in transcriptome microarray experiments are resolved by actinomycin D. Nucleic Acids Research 35(19), e128.

    Google Scholar 

  • Pheasant, M., & Mattick, J. S. (2007). Raising the estimate of functional human sequences. Genome Research, 17(9), 1245–1253.

    PubMed  CAS  Google Scholar 

  • Png, K. J., Yoshida, M., et al. (2011). MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes & Development, 25(3), 226–231.

    CAS  Google Scholar 

  • Pollard, K. S., Salama, S. R., et al. (2006). An RNA gene expressed during cortical development evolved rapidly in humans. Nature, 443(7108), 167–172.

    PubMed  CAS  Google Scholar 

  • Ponjavic, J., Ponting, C. P., et al. (2007). Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Research, 17(5), 556–565.

    PubMed  CAS  Google Scholar 

  • Ponting, C. P., Oliver, P. L., et al. (2009). Evolution and functions of long noncoding RNAs. Cell, 136(4), 629–641.

    PubMed  CAS  Google Scholar 

  • Prasanth, K. V., & Spector, D. L. (2007). Eukaryotic regulatory RNAs: An answer to the ‘genome complexity’ conundrum. Genes & Development, 21(1), 11–42.

    CAS  Google Scholar 

  • Qu, Z. P., & Adelson, D. L. (2012). Bovine ncRNAs are abundant, primarily intergenic, conserved and associated with regulatory genes. PLoS One 7(8), e42638.

    Google Scholar 

  • Rapicavoli, N. A., & Blackshaw, S. (2009). New meaning in the message: Noncoding RNAs and their role in retinal development. Developmental Dynamics, 238(9), 2103–2114.

    PubMed  CAS  Google Scholar 

  • Ravasi, T., Suzuki, H., et al. (2006). Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Research, 16(1), 11–19.

    PubMed  CAS  Google Scholar 

  • Redrup, L., Branco, M. R., et al. (2009). The long noncoding RNA Kcnq1ot1 organises a lineage-specific nuclear domain for epigenetic gene silencing. Development, 136(4), 525–530.

    PubMed  CAS  Google Scholar 

  • Reinius, B., Shi, C., et al. (2010). Female-biased expression of long non-coding RNAs in domains that escape X-inactivation in mouse. BMC Genomics, 11, 614.

    PubMed  Google Scholar 

  • Ringrose, L., & Paro, R. (2004). Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annual Review of Genetics, 38, 413–443.

    PubMed  CAS  Google Scholar 

  • Rinn, J. L., & Chang, H. Y. (2012). Genome regulation by long noncoding RNAs. Annual Review of Biochemistry, 81, 145–166.

    PubMed  CAS  Google Scholar 

  • Rinn, J. L., Kertesz, M., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129(7), 1311–1323.

    PubMed  CAS  Google Scholar 

  • Ripoche, M. A., Kress, C., et al. (1997). Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes & Development, 11(12), 1596–1604.

    CAS  Google Scholar 

  • Rubio-Somoza, I., Weigel, D., et al. (2011). ceRNAs: miRNA target mimic mimics. Cell, 147(7), 1431–1432.

    PubMed  CAS  Google Scholar 

  • Salmena, L., Poliseno, L., et al. (2011). A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 146(3), 353–358.

    PubMed  CAS  Google Scholar 

  • Sasaki, Y. T., Ideue, T., et al. (2009). MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proceedings of the National Academy of Sciences USA, 106(8), 2525–2530.

    CAS  Google Scholar 

  • Sato, M., Shinozaki-Yabana, S., et al. (2001). The fission yeast meiotic regulator Mei2p undergoes nucleocytoplasmic shuttling. FEBS Letters, 499(3), 251–255.

    PubMed  CAS  Google Scholar 

  • Schmitt, S., & Paro R. (2006). RNA at the steering wheel. Genome Biology 7(5), 218.

    Google Scholar 

  • Schorderet, P., & Duboule, D. (2011). Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genetics, 7(5), e1002071.

    PubMed  CAS  Google Scholar 

  • Selinger, D. W., Cheung, K. J., et al. (2000). RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nature Biotechnology, 18(12), 1262–1268.

    PubMed  CAS  Google Scholar 

  • Sexton, T., Yaffe, E., et al. (2012). Three-dimensional folding and functional organization principles of the Drosophila genome. Cell, 148(3), 458–472.

    PubMed  CAS  Google Scholar 

  • Sheik Mohamed, J., Gaughwin, P. M., et al. (2010). Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA, 16(2), 324–337.

    PubMed  Google Scholar 

  • Shimada, T., Yamashita, A., et al. (2003). The fission yeast meiotic regulator Mei2p forms a dot structure in the horse-tail nucleus in association with the sme2 locus on chromosome II. Molecular Biology of the Cell, 14(6), 2461–2469.

    PubMed  CAS  Google Scholar 

  • Shiraki, T., Kondo, S., et al. (2003). Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proceedings of the National Academy of Sciences USA, 100(26), 15776–15781.

    CAS  Google Scholar 

  • Shore, A. N., Kabotyanski, E. B., et al. (2012). Pregnancy-Induced Noncoding RNA (PINC) associates with polycomb repressive complex 2 and regulates mammary epithelial differentiation. PLoS Genetics, 8(7), e1002840.

    PubMed  CAS  Google Scholar 

  • Simon, M. D., Wang, C. I., et al. (2011). The genomic binding sites of a noncoding RNA. Proceedings of the National Academy of Sciences USA, 108(51), 20497–20502.

    CAS  Google Scholar 

  • Sleutels, F., Tjon, G., et al. (2003). Imprinted silencing of Slc22a2 and Slc22a3 does not need transcriptional overlap between Igf2r and Air. EMBO Journal, 22(14), 3696–3704.

    PubMed  CAS  Google Scholar 

  • Sleutels, F., Zwart, R., et al. (2002). The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature, 415(6873), 810–813.

    PubMed  CAS  Google Scholar 

  • Smith, C. M., & Steitz, J. A. (1998). Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5’-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Molecular and Cellular Biology, 18(12), 6897–6909.

    PubMed  CAS  Google Scholar 

  • Spitale, R. C., Tsai, M. C., et al. (2011). RNA templating the epigenome: Long noncoding RNAs as molecular scaffolds. Epigenetics, 6(5), 539–543.

    PubMed  CAS  Google Scholar 

  • Stadtfeld, M., & Hochedlinger, K. (2010). Induced pluripotency: history, mechanisms, and applications. Genes & Development, 24(20), 2239–2263.

    CAS  Google Scholar 

  • Stanke, M., Diekhans, M., et al. (2008). Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics, 24(5), 637–644.

    PubMed  CAS  Google Scholar 

  • Stolc, V., Gauhar, Z., et al. (2004). A gene expression map for the euchromatic genome of Drosophila melanogaster. Science, 306(5696), 655–660.

    PubMed  CAS  Google Scholar 

  • Stolc, V., Samanta, M. P., et al. (2005). Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays. Proceedings of the National Academy of Sciences USA, 102(12), 4453–4458.

    CAS  Google Scholar 

  • Struhl, K. (2007). Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nature Structural & Molecular Biology, 14(2), 103–105.

    CAS  Google Scholar 

  • Sunwoo, H., Dinger, M. E., et al. (2009). MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Research, 19(3), 347–359.

    PubMed  CAS  Google Scholar 

  • Swiezewski, S., Liu, F., et al. (2009). Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature, 462(7274), 799–802.

    PubMed  CAS  Google Scholar 

  • Taft, R. J., Pheasant, M., et al. (2007). The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays, 29(3), 288–299.

    PubMed  CAS  Google Scholar 

  • Tjaden, B., Saxena, R. M., et al. (2002). Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. Nucleic Acids Research, 30(17), 3732–3738.

    PubMed  CAS  Google Scholar 

  • Tochitani, S., & Hayashizaki, Y. (2008). Nkx2.2 antisense RNA overexpression enhanced oligodendrocytic differentiation. Biochemical and Biophysical Research Communications, 372(4), 691–696.

    PubMed  CAS  Google Scholar 

  • Tripathi, V., Ellis, J. D., et al. (2010). The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Molecular Cell, 39(6), 925–938.

    PubMed  CAS  Google Scholar 

  • Tsai, M. C., Manor, O., et al. (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science, 329(5992), 689–693.

    PubMed  CAS  Google Scholar 

  • Tsuiji, H., Yoshimoto, R., et al. (2011). Competition between a noncoding exon and introns: Gomafu contains tandem UACUAAC repeats and associates with splicing factor-1. Genes to Cells, 16(5), 479–490.

    PubMed  CAS  Google Scholar 

  • Ulitsky, I., Shkumatava, A., et al. (2011). Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell, 147(7), 1537–1550.

    PubMed  CAS  Google Scholar 

  • van Werven, F. J., Neuert, G., et al. (2012). Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell, 150(6), 1170–1181.

    PubMed  Google Scholar 

  • Wadler, C. S., & Vanderpool, C. K. (2007). A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. Proceedings of the National Academy of Sciences USA, 104(51), 20454–20459.

    CAS  Google Scholar 

  • Wagner, L. A., Christensen, C. J., et al. (2007). EGO, a novel, noncoding RNA gene, regulates eosinophil granule protein transcript expression. Blood, 109(12), 5191–5198.

    PubMed  CAS  Google Scholar 

  • Wang, K. C., & Chang, H. Y. (2011). Molecular mechanisms of long noncoding RNAs. Molecular Cell, 43(6), 904–914.

    PubMed  CAS  Google Scholar 

  • Wang, K. C., Yang, Y. W., et al. (2011). A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 472(7341), 120–124.

    PubMed  CAS  Google Scholar 

  • Wapinski, O., & Chang, H. Y. (2011). Long noncoding RNAs and human disease. Trends in Cell Biology, 21(6), 354–361.

    PubMed  CAS  Google Scholar 

  • Warner, J. R., Knopf, P. M., et al. (1963). A multiple ribosomal structure in protein synthesis. Proceedings of the National Academy of Sciences USA, 49, 122–129.

    CAS  Google Scholar 

  • Washietl, S., Hofacker, I. L., et al. (2005). Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nature Biotechnology, 23(11), 1383–1390.

    PubMed  CAS  Google Scholar 

  • Watanabe, T., Miyashita, K., et al. (2001). Comprehensive isolation of meiosis-specific genes identifies novel proteins and unusual non-coding transcripts in Schizosaccharomyces pombe. Nucleic Acids Research, 29(11), 2327–2337.

    PubMed  CAS  Google Scholar 

  • Watanabe, Y., & Yamamoto, M. (1994). S. pombe mei2 + encodes an RNA-binding protein essential for premeiotic DNA synthesis and meiosis I, which cooperates with a novel RNA species meiRNA. Cell, 78(3), 487–498.

    PubMed  CAS  Google Scholar 

  • White, R. J. (2011). Transcription by RNA polymerase III: more complex than we thought. Nature Reviews Genetics, 12(7), 459–463.

    PubMed  CAS  Google Scholar 

  • Wilhelm, B. T., Marguerat, S., et al. (2008). Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature, 453(7199), 1239–1243.

    PubMed  CAS  Google Scholar 

  • Wilusz, J. E., Sunwoo, H., et al. (2009). Long noncoding RNAs: functional surprises from the RNA world. Genes & Development, 23(13), 1494–1504.

    CAS  Google Scholar 

  • Wutz, A. (2011). Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nature Reviews Genetics, 12(8), 542–553.

    PubMed  CAS  Google Scholar 

  • Wutz, A., Theussl, H. C., et al. (2001). Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice. Development, 128(10), 1881–1887.

    PubMed  CAS  Google Scholar 

  • Yamada, K., Lim, J., et al. (2003). Empirical analysis of transcriptional activity in the Arabidopsis genome. Science, 302(5646), 842–846.

    PubMed  CAS  Google Scholar 

  • Yamashita, A., Watanabe, Y., et al. (1998). RNA-assisted nuclear transport of the meiotic regulator Mei2p in fission yeast. Cell, 95(1), 115–123.

    PubMed  CAS  Google Scholar 

  • Yekta, S., Tabin, C. J., et al. (2008). MicroRNAs in the Hox network: an apparent link to posterior prevalence. Nature Reviews Genetics, 9(10), 789–796.

    PubMed  CAS  Google Scholar 

  • Yoon, J. H., & Abdelmohsen, K. et al. (2012). LincRNA-p21 suppresses target mRNA translation. Molecular Cell, 47 (4), 648–655.

    Google Scholar 

  • Young, R. A. (2011). Control of the embryonic stem cell state. Cell, 144(6), 940–954.

    PubMed  CAS  Google Scholar 

  • Zhang, B., Arun, G., et al. (2012). The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Reports, 2(1), 111–123.

    PubMed  CAS  Google Scholar 

  • Zhang, X., Lian, Z., et al. (2009). A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood, 113(11), 2526–2534.

    PubMed  CAS  Google Scholar 

  • Zhao, J., Ohsumi, T. K., et al. (2010). Genome-wide identification of polycomb-associated RNAs by RIP-seq. Molecular Cell, 40(6), 939–953.

    PubMed  CAS  Google Scholar 

  • Zhao, J., Sun, B. K., et al. (2008). Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science, 322(5902), 750–756.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey F. Lodish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alvarez-Dominguez, J.R., Hu, W., Lodish, H.F. (2013). Regulation of Eukaryotic Cell Differentiation by Long Non-coding RNAs. In: Khalil, A., Coller, J. (eds) Molecular Biology of Long Non-coding RNAs. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8621-3_2

Download citation

Publish with us

Policies and ethics