Skip to main content

Dynamics and Optimization of Multibody Systems in the Presence of Dry Friction

  • Chapter
  • First Online:

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 87))

Abstract

Motions of multibody mechanical systems over a horizontal plane in the presence of dry friction forces are considered. Since the dry friction force is defined by Coulomb’s law as a nonsmooth function of the velocity of the moving body, the dynamics of systems under consideration is described by differential equations with nonsmooth right-hand sides. Two kinds of multibody systems are analyzed: snakelike multilink systems with actuators placed at the joints and vibro-robots containing movable internal masses controlled by actuators. It is shown that both types of systems can perform progressive locomotion caused by periodic relative motions of the bodies. The average speed of the systems is evaluated. Optimal values of the system parameters and optimal controls are found that correspond to the maximum locomotion speed. Experimental data confirm the obtained theoretical results. Principles of motions considered are of interest for biomechanics and robotics, especially, for mobile robots moving in various environments and inside tubes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gray, J.: Animal Locomotion. Norton, New York (1968)

    Google Scholar 

  2. Hirose, S.: Biologically Inspired Robots: Snake-Like Locomotors and Manipulators. Oxford University Press, Oxford (1993)

    Google Scholar 

  3. Bayraktaroglu, Z.Y., Blazevic, P.: Snake-like locomotion with a minimal mechanism. In: Proceedings of the Third International Conference Climbing and Walking Robots CLAWAR, pp. 201–207. Madrid (2000)

    Google Scholar 

  4. Transeth, A.A., Pettersen, K.V., Liljeback, P.: A survey on snake robot modelling and locomotion. Robotica 27(7), 999–1015 (2009)

    Article  Google Scholar 

  5. Chernousko, F.L.: The motion of a multilink system along a horizontal plane. J. Appl. Math. Mech. 64(1), 5–15 (2000)

    Article  MathSciNet  Google Scholar 

  6. Chernousko, F.L.: The wavelike motion of a multilink system on a horizontal plane. J. Appl. Math. Mech. 64(4), 497–508 (2000)

    Article  MathSciNet  Google Scholar 

  7. Chernousko, F.L.: On the motion of a three-member linkage along a plane. J. Appl. Math. Mech. 65(1), 3–18 (2001)

    MathSciNet  Google Scholar 

  8. Chernousko, F.L.: Controllable motions of a two-link mechanism along a horizontal plane. J. Appl. Math. Mech. 65(4), 565–577 (2001)

    Article  MathSciNet  Google Scholar 

  9. Smyshlyaev, A.S., Chernousko, F.L.: Optimization of the motion of multilink robots on a horizontal plane. J. Comput. Syst. Sci. Int. 40(2), 340–348 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Chernousko, F.L.: Snake-like locomotions of multilink mechanisms. J. Vib. Control 9(1–2), 235–256 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Chernousko, F.L.: Modelling of snake-like locomotion. J. Appl. Math. Comput. 164(2), 415–434 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chernousko, F.L., Pfeiffer, F., Sobolev, N.A.: Experimental study of snake-like locomotion of a three-link mechanism. In: Proceedings of the IUTAM Symposium Vibration Control of Nonlinear Mechanisms and Structures, pp. 141–150. Springer, Dordrecht (2005)

    Google Scholar 

  13. Chernousko, F.L., Shunderyuk, M.M.: The influence of friction forces on the dynamics of a two-link mobile robot. J. Appl. Math. Mech. 74(1), 22–36 (2010)

    MathSciNet  Google Scholar 

  14. Darby, A.P., Pellegrino, S.: Inertial stick-slip actuators for active control of shape and vibration. J. Intell. Mater. Syst. Struct. 8(12), 1001–1011 (1997)

    Article  Google Scholar 

  15. Breguet, J.-M., Clavel, R.: Stick and slip actuators: design, control, performances and applications. In: Proceedings of International Symposium Micromechatronics and Human Science (MHS), pp. 89–95. IEEE, New-York (1998)

    Google Scholar 

  16. Schmoeckel, F., Worn, H.: Remotely controllable mobile mocrorobots acting as nano positioners and intelligent tweezers in scanning electron microscopes (SEMs). In: Proceedings of International Conference Robotics and Automation, pp. 3903–3913. IEEE, New York (2001)

    Google Scholar 

  17. Fidlin, F., Thomsen, J.J.: Predicting vibration-induced displacement for a resonant friction slider. Eur. J. Mech. A/Solids 20(1), 155–166 (2001)

    Article  MATH  Google Scholar 

  18. Lampert, P., Vakebtutu, A., Lagrange, B., De Lit, P., Delchambre, A.: Design and performances of a one-degree-of-freedom guided nano-actuator. Robot. Comput. Integr. Manuf. 19(1–2), 89–98 (2003)

    Article  Google Scholar 

  19. Gradetsky, V., Solovtsov, V., Kniazkov, M., Rizzotto, G.G., Amato, P.: Modular design of electro-magnetic mechatronic microrobots. In: Proceedings of 6th International Conference Climbing and Walking Robots CLAWAR, pp. 651–658 (2003)

    Google Scholar 

  20. Kim, B., Lee, S., Park, J.H., Park, J.O.: Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs). IEEE/ASME Trans. Mechatron. 10(1), 77–86 (2005)

    Article  MathSciNet  Google Scholar 

  21. Vartholomeos, P., Papadopoulos, E.: Dynamics, design and simulation of a novel microrobotic platform employing vibration microactuators. Trans. ASME J. Dyn. Syst. Meas. Control 128(1), 122–133 (2006)

    Article  Google Scholar 

  22. Zimmermann, K., Zeidis, I., Behn, C.: Mechanics of Terrestrial Locomotion. Springer, Berlin (2009)

    MATH  Google Scholar 

  23. Chernousko, F.L.: The optimum rectilinear motion of a two-mass system. J. Appl. Math. Mech. 66(1), 1–7 (2002)

    Article  MathSciNet  Google Scholar 

  24. Chernousko, F.L..: Analysis and optimization of the motion of a body controlled by a movable internal mass. J. Appl. Math. Mech. 70(6), 915–941 (2006)

    MathSciNet  Google Scholar 

  25. Chernousko, F.L..: Dynamics of a body controlled by internal motions. In: Proceedings of IUTAM Symposium Dynamics and Control of Nonlinear Systems with Uncertainty, pp. 227–236. Springer, Dordrecht (2007)

    Google Scholar 

  26. Chernousko, F.L..: The optimal periodic motions of a two-mass system in a resistant medium. J. Appl. Math. Mech. 72(2), 116–125 (2008)

    Article  MathSciNet  Google Scholar 

  27. Chernousko, F.L..: Analysis and optimization of the rectilinear motion of a two-body system. J. Appl. Math. Mech. 75(5), 493–500 (2011)

    Article  MathSciNet  Google Scholar 

  28. Figurina, T.Yu.: Quasi-static motion of a two-link system along a horizontal plane. Multibody Syst. Dyn. 11(3), 251–272 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Figurina, T.Yu.: Controlled slow motions of a three-link robot on a horizontal plane. J. Comput. Syst. Sci. Int. 44(3), 473–480 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Chernousko, F.L.: Equilibrum conditions for a solid on a rough plane. Mech. Solids 23(6), 1–12 (1988)

    Google Scholar 

  31. Figurina, T.Yu.: Optimal motion control for a system of two bodies on a straight line. J. Comput. Syst. Sci. Int. 46(2), pp. 227–233 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bolotnik, N.N., Zeidis, I.M., Zimmermann, K., Yatsun, S.F.: Dynamics of controlled motion of vibration-driven system. J. Comput. Syst. Sci. Int. 45(5), 831–840 (2006)

    Article  MATH  Google Scholar 

  33. Chernousko, F.L., Zimmermann, K., Bolotnik, N.N.,Yatsun, S.F., Zeidis, I.: Vibration-driven robots. In: Proceedings of Workshop on Adaptive and Intelligent Robots: Present and Future, vol. 1, pp. 26–31. Moscow (2005)

    Google Scholar 

  34. Li, H., Furuta K., Chernousko, F.L.: A pendulum-driven cart via internal force and static friction. In: Proceedings of International Conference “Physics and Control”, pp. 15–17. St. Petersburg, Russia (2005)

    Google Scholar 

  35. Li, H., Furuta, K., Chernousko, F.L.: Motion generation of the Capsubot using internal force and static friction. In: Proceedings of 45th IEEE Conference Decision and Control, pp. 6575–6580. San Diego, USA (2006)

    Google Scholar 

  36. Chernousko, F.L.: Optimal motion of a two-body system in a resistive medium. J. Optim. Theory Appl. 147(2), 278–297 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chernousko, F.L.: Optimal control of multilink systems in a fluid. Cybern. Phys. 1(1), 17–21 (2012)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. L. Chernousko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chernousko, F.L. (2014). Dynamics and Optimization of Multibody Systems in the Presence of Dry Friction. In: Demyanov, V., Pardalos, P., Batsyn, M. (eds) Constructive Nonsmooth Analysis and Related Topics. Springer Optimization and Its Applications, vol 87. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8615-2_6

Download citation

Publish with us

Policies and ethics