Proteomic Analysis of the Asthmatic Airway

  • John E. WiktorowiczEmail author
  • Mohammad Jamaluddin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 795)


Proteomic investigations in general utilize varied technologies for sample preparation, separations, quantification, protein identification, and biological rationalization. Their applications range from pure discovery and mechanistic studies to biomarker discovery/verification/validation. In each specific case, the analytical strategy to be implemented is tailored to the type of sample that serves as the target of the investigations. Proteomic investigations take into consideration sample complexity, the cellular heterogeneity (particularly from tissues), the potential dynamic range of the protein and peptide abundance within the sample, the likelihood of posttranslational modifications (PTM), and other important factors that might influence the final output of the study. We describe the sample types typically used for proteomic investigations into the biology of asthma and review the most recent related publications with special attention to those that deal with the unique airway samples such as bronchoalveolar lavage fluids (BALF), epithelial lining fluid and cells (ELF), induced sputum (IS), and exhaled breath condensate (EBC). Finally, we describe the newest proteomics approaches to sample preparation of the unique airway samples, BALF and IS.


Proteomics Sample prep Size-exclusion chromatography Asthma Airway inflammation Bronchoalveolar lavage Epithelial lining fluid Induced sputum Exhaled breath condensate Bronchoscopic microsampling 


  1. Ali M, Lillehoj EP, Park Y et al (2011) Analysis of the proteome of human airway epithelial secretions. Proteome Sci 9:4PubMedCrossRefGoogle Scholar
  2. Altraja S, Jaama J, Valk E et al (2009) Changes in the proteome of human bronchial epithelial cells following stimulation with leucotriene E4 and transforming growth factor-beta1. Respirology 14:39–45PubMedCrossRefGoogle Scholar
  3. Altraja S, Jaama J, Altraja A (2010) Proteome changes of human bronchial epithelial cells in response to pro-inflammatory mediator leukotriene E4 and pro-remodelling factor TGF-beta1. J Proteomics 73:1230–1240PubMedCrossRefGoogle Scholar
  4. Brasier AR, Garcia J, Wiktorowicz JE et al (2012a) Discovery proteomics and nonparametric modeling pipeline in the development of a candidate biomarker panel for dengue hemorrhagic fever. Clin Transl Sci 5:8–20PubMedCrossRefGoogle Scholar
  5. Brasier AR, Ju H, Garcia J et al (2012b) A three-component biomarker panel for prediction of dengue hemorrhagic fever. Am J Trop Med Hyg 86:341–348PubMedCrossRefGoogle Scholar
  6. Cao R, Wang TT, DeMaria G et al (2012) Mapping the protein domain structures of the respiratory mucins: a mucin proteome coverage study. J Proteome Res 11:4013–4023PubMedCrossRefGoogle Scholar
  7. Cederfur C, Malmstrom J, Nihlberg K et al (2012) Glycoproteomic identification of galectin-3 and -8 ligands in bronchoalveolar lavage of mild asthmatics and healthy subjects. Biochim Biophys Acta 1820:1429–1436PubMedCrossRefGoogle Scholar
  8. Fitzpatrick AM, Brown LA, Holguin F et al (2009a) Levels of nitric oxide oxidation products are increased in the epithelial lining fluid of children with persistent asthma. J Allergy Clin Immunol 124:990–996, e1–9PubMedCrossRefGoogle Scholar
  9. Fitzpatrick AM, Teague WG, Holguin F et al (2009b) Airway glutathione homeostasis is altered in children with severe asthma: evidence for oxidant stress. J Allergy Clin Immunol 123:146–152, e8PubMedCrossRefGoogle Scholar
  10. Franciosi L, Govorukhina N, Ten Hacken N et al (2011) Proteomics of epithelial lining fluid obtained by bronchoscopic microprobe sampling. Methods Mol Biol 790:17–28PubMedCrossRefGoogle Scholar
  11. Gharib SA, Nguyen EV, Lai Y et al (2011) Induced sputum proteome in healthy subjects and asthmatic patients. J Allergy Clin Immunol 128:1176–1184, e6PubMedCrossRefGoogle Scholar
  12. Giorgianni F, Mileo V, Desiderio DM et al (2012) Characterization of the phosphoproteome in human bronchoalveolar lavage fluid. Int J Proteomics 2012:460261PubMedGoogle Scholar
  13. Gundry RL, Fu Q, Jelinek CA et al (2007) Investigation of an albumin-enriched fraction of human serum and its albuminome. Proteomics Clin Appl 1:73–88PubMedCrossRefGoogle Scholar
  14. Gundry RL, White MY, Nogee J et al (2009) Assessment of albumin removal from an immunoaffinity spin column: critical implications for proteomic examination of the albuminome and albumin-depleted samples. Proteomics 9:2021–2028PubMedCrossRefGoogle Scholar
  15. Haenen S, Vanoirbeek JA, De Vooght V et al (2010) Proteome analysis of multiple compartments in a mouse model of chemical-induced asthma. J Proteome Res 9:5868–5876PubMedCrossRefGoogle Scholar
  16. Holguin F, Fitzpatrick A (2010) Obesity, asthma, and oxidative stress. J Appl Physiol 108:754–759PubMedCrossRefGoogle Scholar
  17. Kipnis E, Hansen K, Sawa T et al (2008) Proteomic analysis of undiluted lung epithelial lining fluid. Chest 134:338–345PubMedCrossRefGoogle Scholar
  18. Kroeker AL, Ezzati P, Halayko AJ et al (2012) Response of primary human airway epithelial cells to influenza infection: a quantitative proteomic study. J Proteome Res 11:4132–4146PubMedCrossRefGoogle Scholar
  19. Li SJ, Peng M, Li H et al (2009) Sys-BodyFluid: a systematical database for human body fluid proteome research. Nucleic Acids Res 37:D907–D912PubMedCrossRefGoogle Scholar
  20. Lim JR, Gupta SK, Croffie JM et al (2004) White specks in the esophageal mucosa: an endoscopic manifestation of non-reflux eosinophilic esophagitis in children. Gastrointest Endosc 59:835–838PubMedCrossRefGoogle Scholar
  21. Lin JL, Bonnichsen MH, Nogeh EU et al (2010) Proteomics in detection and monitoring of asthma and smoking-related lung diseases. Expert Rev Proteomics 7:361–372PubMedCrossRefGoogle Scholar
  22. Lovric J (2011) Introducing proteomics: from concepts to sample separation, mass spectrometry, and data analysis. Wiley, West SussexGoogle Scholar
  23. Mishra NC (2010) Introduction to proteomics: principles and applications. Wiley, Hoboken, NJCrossRefGoogle Scholar
  24. Montuschi P (2007) Analysis of exhaled breath condensate in respiratory medicine: methodological aspects and potential clinical applications. Ther Adv Respir Dis 1:5–23PubMedCrossRefGoogle Scholar
  25. Moore WC, Meyers DA, Wenzel SE et al (2010) Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med 181:315–323PubMedCrossRefGoogle Scholar
  26. Nagai T, Nakao M, Shimizu Y et al (2011) Proteomic analysis of anti-inflammatory effects of a kampo (Japanese Herbal) medicine “Shoseiryuto (Xiao-Qing-Long-Tang)” on airway inflammation in a mouse model. Evidence-based complementary and alternative medicine. eCAM 2011:604196PubMedGoogle Scholar
  27. Nicholas B, Djukanović R (2009) Induced sputum: a window to lung pathology. Biochem Soc Trans 037:868–872CrossRefGoogle Scholar
  28. Noel-Georis I, Bernard A, Falmagne P et al (2002) Database of bronchoalveolar lavage fluid proteins. J Chromatogr B 771:221–236CrossRefGoogle Scholar
  29. O’Neil SE, Lundback B, Lotvall J (2011a) Proteomics in asthma and COPD phenotypes and endotypes for biomarker discovery and improved understanding of disease entities. J Proteomics 75:192–201PubMedCrossRefGoogle Scholar
  30. O’Neil SE, Sitkauskiene B, Babusyte A et al (2011b) Network analysis of quantitative proteomics on asthmatic bronchi: effects of inhaled glucocorticoid treatment. Respir Res 12:124PubMedCrossRefGoogle Scholar
  31. Park CS, Rhim T (2011) Application of proteomics in asthma research. Expert Rev Proteomics 8:221–230PubMedCrossRefGoogle Scholar
  32. Pretzer E, Wiktorowicz JE (2008) Saturation fluorescence labeling of proteins for proteomic analyses. Anal Biochem 374:250–262PubMedCrossRefGoogle Scholar
  33. Quesada Calvo F, Fillet M, Renaut J et al (2011) Potential therapeutic target discovery by 2D-DIGE proteomic analysis in mouse models of asthma. J Proteome Res 10:4291–4301PubMedCrossRefGoogle Scholar
  34. Richter R, Schulz-Knappe P, Schrader M et al (1999) Composition of the peptide fraction in human blood plasma: database of circulating human peptides. J Chromatogr B Biomed Sci Appl 726:25–35PubMedCrossRefGoogle Scholar
  35. Rottoli P, Bargagli E, Landi C et al (2009) Proteomic analysis in interstitial lung diseases: a review. Curr Opin Pulm Med 15:470–478PubMedCrossRefGoogle Scholar
  36. Seferovic MD, Krughkov V, Pinto D et al (2008) Quantitative 2-D gel electrophoresis-based expression proteomics of albumin and IgG immunodepleted plasma. J Chromatogr B Analyt Technol Biomed Life Sci 865:147–152PubMedCrossRefGoogle Scholar
  37. Simpson RJ, Lim JW, Moritz RL et al (2009) Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 6:267–283PubMedCrossRefGoogle Scholar
  38. Terracciano R, Preiano M, Palladino GP et al (2011) Peptidome profiling of induced sputum by mesoporous silica beads and MALDI-TOF MS for non-invasive biomarker discovery of chronic inflammatory lung diseases. Proteomics 11:3402–3414PubMedCrossRefGoogle Scholar
  39. Tyagarajan K, Pretzer EL, Wiktorowicz JE (2003) Thiol-reactive dyes for fluorescence labeling of proteomic samples. Electrophoresis 24:2348–2358PubMedCrossRefGoogle Scholar
  40. Vento G, Tirone C, Aurilia C et al (2010) Proteomics and neonatal infection. Minerva Pediatr 62:47–49PubMedGoogle Scholar
  41. Wiktorowicz JE, Soman K, Haag A (2011) Discovery strategies for proteomic profiling of airway diseases. Curr Proteomics 8:97–110CrossRefGoogle Scholar
  42. Xu YD, Cui JM, Wang Y et al (2010) The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats. Respir Res 11:107PubMedCrossRefGoogle Scholar
  43. Zhang L, Wang M, Kang X et al (2009) Oxidative stress and asthma: proteome analysis of chitinase-like proteins and FIZZ1 in lung tissue and bronchoalveolar lavage fluid. J Proteome Res 8:1631–1638PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Biochemistry & Molecular BiologyUniversity of Texas Medical BranchGalvestonUSA
  2. 2.University of Texas Medical BranchGalvestonUSA

Personalised recommendations