Skip to main content

Abstract

Plants are delimited by variety of environmental stresses which affect them throughout their life cycle. These stresses particularly salt, cold, and drought hamper their development, productivity resulting in great loss in crop yield across globe. To overcome environmental stresses, plants have acquired wide range of defensive response including altered gene expression, change in cellular metabolism in terms of accumulation of low-molecular-weight compounds. These metabolites include amino acids, sugars, sugar alcohols, and quaternary amines that protect proteins and membranes against damage. This chapter is intended to give an overview of osmoprotective compounds with an emphasis on recent advances describing their function, significance in adaptation, and their potential to perk up stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    PubMed  CAS  Google Scholar 

  • Abreu EF, Aragao FJ (2007) Isolation and characterization of a myoinositol-1-phosphate synthase gene from yellow passion fruit (Passiflora edulis f. flavicarpa) expressed during seed development and environmental stress. Ann Bot 99:285–292

    PubMed  CAS  Google Scholar 

  • Ahmad P, Sharma S (2008) Salt stress and phytobiochemical responses of plants. Plant Soil Environ 54:89–99

    Google Scholar 

  • Ahmad P, Kumar A, Gupta A, Hu X, Hakeem KR, Azooz MM, Sharma S (2012a) Polyamines: role in plants under abiotic stress. In: Ashraf M, Öztürk M, Ahmad MSA, Aksoy A (eds) Crop production for agricultural improvement. Springer Science and Business Media, Netherlands, pp 491–512

    Google Scholar 

  • Ahmad P, Hakeem KR, Kumar A, Ashraf M, Akram NA (2012b) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol 11:2694–2703

    CAS  Google Scholar 

  • Ahmad R, Lim CJ, Kwon SY (2013) Glycine betaine: a versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. Plant Biotechnol Rep 7:49–57

    Google Scholar 

  • Alcazar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas J, Bitrian M, Tiburcio AF, Altabella T (2010) Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants overexpressing the homologous arginine decarboxylase 2 gene. Plant Physiol Biochem 48:547–552

    PubMed  CAS  Google Scholar 

  • Alcazar R, Cuevas J, Planas J, Zarza X, Bortolotti C, Carrasco P, Salinas J, Tiburcio AF, Altabella T (2011) Integration of polyamines in the cold acclimation response. Plant Sci 180:31–38

    PubMed  CAS  Google Scholar 

  • Alet AI, Sanchez DH, Cuevas JC, Del Valle S, Altabella T, Tubircio AF, Marco F, Fernando A, Espasandin FD, Gonzales ME, Ruiz OA, Carrascp P (2011) Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. Plant Signal Behav 6:278–286

    PubMed  CAS  Google Scholar 

  • Arbona V, Argamasilla R, Gomez-Cadenas A (2010) Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. J Plant Physiol 167:1342–1350

    PubMed  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    CAS  Google Scholar 

  • Bajji M, Lutts S, Kinet J (2001) Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Sci 160:669–681

    PubMed  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Cr Rev Plant Sci 24:23–58

    CAS  Google Scholar 

  • Basu PS, Ali M, Chaturvedi SK (2007) Osmotic adjustment increases water uptake, remobilization of assimilates and maintains photosynthesis in chickpea under drought. Indian J Exp Biol 45:261–267

    PubMed  CAS  Google Scholar 

  • Ben Hassine A, Ghanem ME, Bouzid S, Lutts S (2008) An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress. J Exp Bot 59:1315–1326

    PubMed  CAS  Google Scholar 

  • Bianchi G, Gamba A, Limiroli R, Pozzi N, Elster R, Salamini F, Bartels D (1993) The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol Plant 87:223–226

    CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    PubMed  CAS  Google Scholar 

  • Bolen DW, Baskakov IV (2001) The osmophobic effect: natural selection of a thermodynamic force in protein folding. J Mol Biol 310:955–963

    PubMed  CAS  Google Scholar 

  • Bouche N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115

    PubMed  CAS  Google Scholar 

  • Bowne JB, Erwin TA, Juttner J, Schnurbusch T, Langridge P, Bacic A, Roessner U (2012) Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol Plant 5:418–429

    PubMed  CAS  Google Scholar 

  • Brodmann A, Schuller A, Ludwig-Müller J, Aeschbacher RA, Wiemken A, Boller T, Wingler A (2002) Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. Mol Plant Microbe Interact 15:693–700

    PubMed  CAS  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci U S A 101:9909–9914

    PubMed  CAS  Google Scholar 

  • Chen TH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505

    PubMed  CAS  Google Scholar 

  • Chen TH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    PubMed  Google Scholar 

  • Chen XM, Hu L, Lu H, Liu QL, Jiang XN (2005) Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol 25:1273–1281

    PubMed  Google Scholar 

  • Choudhary NL, Sairam RK, Tyagi A (2005) Expression of delta1-pyrroline- 5-carboxylate synthetase gene during drought in rice (Oryza sativa L.). Indian J Biochem Biophys 42:366–370

    PubMed  CAS  Google Scholar 

  • Crowe JH (2007) Trehalose as a “chemical chaperone”: fact and fantasy. Adv Exp Med Biol 594:143–158

    PubMed  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703

    PubMed  CAS  Google Scholar 

  • Cruz FJR, Castro GLS, Silva Júnior DD, Festucci-Buselli RA, Pinheiro HA (2013) Exogenous glycine betaine modulates ascorbate peroxidase and catalase activities and prevent lipid peroxidation in mild water-stressed Carapa guianensis plants. Photosynthetica 51:102–108

    CAS  Google Scholar 

  • Cuevas JC, Lopez-Cobollo R, Alcazar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105

    PubMed  CAS  Google Scholar 

  • de Carvalho K, de Campos MKF, Domingues DS, Pereira LFP, Vieira LGE (2013) The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Mol Biol Rep 40:3269–3279

    PubMed  CAS  Google Scholar 

  • De Ronde JA, Cress WA, Kruger GHJ, Strasser RJ, Van Staden J (2004) Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 161:1211–1224

    PubMed  Google Scholar 

  • Dedemo GC, Rodrigues FA, Roberto PG, Neto CB, de Castro FS, Zingaretti SM (2013) Osmoprotection in sugarcane under water deficit conditions. Plant Stress 7:1–7

    Google Scholar 

  • Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D, van der Graaff E, Kunze R, Frommer WB (2004) The role of [Delta]1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell 16:3413–3425

    PubMed  CAS  Google Scholar 

  • Drennan PM, Smith MT, Goldsworthy D, van Staden J (1993) The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw. J Plant Physiol 142:493–496

    CAS  Google Scholar 

  • Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13:14–19

    PubMed  CAS  Google Scholar 

  • Fan RC, Peng CC, Xu YH, Wang XF, Li Y, Shang Y, Du SY, Zhao R, Zhang XY, Zhang LY, Zhang DP (2009) Apple sucrose transporter SUT1 and sorbitol transporter SOT6 interact with Cytochrome b5 to regulate their affinity for substrate sugars. Plant Physiol 150:1880–1901

    PubMed  CAS  Google Scholar 

  • Fellows RJ, Patterson RP, Raper CD Jr, Harris D (1987) Nodule activity and allocation of photosynthate of soybean during recovery from water stress. Plant Physiol 84:45–60

    Google Scholar 

  • Feng X, Zhao P, Hao J, Hu J, Kang D, Wang H (2011) Effects of sorbitol on expression of genes involved in regeneration of upland rice (Oryza sativa L.). Plant Cell Tissue Organ Cult 106:455–463

    CAS  Google Scholar 

  • Fernandez O, Bethencourt L, Quero A, Sangwan RS, Clement C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15:409–417

    PubMed  CAS  Google Scholar 

  • Ford CW (1984) Accumulation of low molecular weight solutes in water-stressed tropical legumes. Phytochemistry 23:1007–1015

    CAS  Google Scholar 

  • Gagneul D, Aiouche A, Duhaze C, Lugan R, Larher FR, Bouchereau A (2007) A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae Limonium latifolium. Plant Physiol 144:1598–1611

    PubMed  CAS  Google Scholar 

  • Gao Z, Jayanty S, Beaudry R, Loescher W (2005) Sorbitol transporter expression in apple sink tissues: implications for fruit sugar accumulation and watercore development. J Am Soc Hortic Sci 130:261–268

    CAS  Google Scholar 

  • Garcia AB, JdA E, Iyer S, Gerats T, Van Montagu M, Caplan AB (1997) Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol 115:159–169

    PubMed  CAS  Google Scholar 

  • Garcia PMA, Asega AF, Silva EA, Carvalho MAM (2011) Effect of drought and re-watering on fructan metabolism in Vernonia herbacea (Vell.) Rusby. Plant Physiol Biochem 49:664–670

    PubMed  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99:15898–15903

    PubMed  CAS  Google Scholar 

  • Ge LF, Chao DY, Shi M, Zhu M-Z, Gao JP, Lin H-X (2008) Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228:191–201

    PubMed  CAS  Google Scholar 

  • Goddijn OJ, Verwoerd TC, Voogd E, Krutwagen RW, de Graaf PT, van Dun K, Poels J, Ponstein AS, Damm B, Pen J (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol 113:181–190

    PubMed  CAS  Google Scholar 

  • Gorham J, Hughes L, Wyn-Jones RG (1981) Low-molecularweight carbohydrates in some salt-stressed plants. Physiol Plant 53:27–33

    CAS  Google Scholar 

  • Gregory PJ, Ingram JS, Brklacich M (2005) Climate change and food security. Philos T Roy Soc B 360:2139–2148

    CAS  Google Scholar 

  • Guo P, Baum M, Grando S, Salvatore C, Guihua B, Li R, Maria VK, Varshney RK, Andreas G, Valkoun J (2009) Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot 60:3531–3544

    PubMed  CAS  Google Scholar 

  • Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK (2008) Metabolomics of temperature stress. Physiol Plant 132:220–235

    PubMed  CAS  Google Scholar 

  • Hanson AD, Nelsen CE (1978) Betaine accumulation and [C]formate metabolism in water-stressed barley leaves. Plant Physiol 62:305–312

    PubMed  CAS  Google Scholar 

  • Hanson AD, Rathinasabapathi B, Chamberlin B, Gage DA (1991) Comparative physiological evidence that beta-Alanine Betaine and Choline-O-Sulfate act as compatible osmolytes in halophytic Limonium species. Plant Physiol 97:1199–1205

    PubMed  CAS  Google Scholar 

  • Hanson AD, Rathinasabapathi B, Rivoal J, Burnet M, Dillon MO, Gage DA (1994) Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance. Proc Natl Acad Sci U S A 91:306–310

    PubMed  CAS  Google Scholar 

  • Hare P, Cress W (1997) Metabolic implications of stress induced proline accumulation in plants. Plant Growth Regul 21:79–102

    CAS  Google Scholar 

  • He C, He Y, Liu Q, Liu T, Liu C, Wang L, Zhang J (2013) Co-expression of genes ApGSMT2 and ApDMT2 for glycine betaine synthesis in maize enhances the drought tolerance of plants. Mol Breed 31:559–573

    CAS  Google Scholar 

  • Hendry GAF (1993) Evolutionary origins and natural functions of fructans: a climatological, biogeography and mechanistic appraisal. New Phytol 123:3–14

    CAS  Google Scholar 

  • Hoque MA, Banu NA, Nakamura Y, Shimoishi Y, Murata Y (2008) Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. J Plant Physiol 165:813–824

    PubMed  CAS  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KH (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    PubMed  CAS  Google Scholar 

  • Ishitani M, Majumder AL, Bornhouser A, Michalowski CB, Jensen RG, Bohnert HJ (1996) Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J 9:537–548

    PubMed  CAS  Google Scholar 

  • Islam MM, Hoque MA, Okuma E, Banu NA, Shimoishi Y, Nakamura Y, Murata Y (2009) Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166:1587–1597

    PubMed  CAS  Google Scholar 

  • Jan S, Parween T, Siddiqi TO, Mahmooduzzafar X (2012a) Effect of gamma radiation on morphological, biochemical and physiological aspects of plants and plant products. Environ Rev 20:17–39

    CAS  Google Scholar 

  • Jan S, Parween T, Siddiqi TO, Mahmooduzzafar X (2012b) Anti-oxidant modulation in response to gamma radiation induced oxidative stress in developing seedlings of Psoralea corylifolia L. J Environ Radioact 113:142–149

    PubMed  CAS  Google Scholar 

  • Johnson MD, Sussex IM (1995) 1 L-myo-inositol 1-phosphate synthase from Arabidopsis thaliana. Plant Physiol 107:613–619

    PubMed  CAS  Google Scholar 

  • Joshi R, Ramanarao MV, Baisakh N (2013) Arabidopsis plants constitutively overexpressing a myo-inositol 1-phosphate synthase gene (SaINO1) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress. Plant Physiol Biochem 65:61–66

    PubMed  CAS  Google Scholar 

  • Kanamaru N, Ito Y, Komori S, Saito M, Kato H, Takahashi S, Omura M, Soejima J, Shiratake K, Yamada K, Yamaki S (2004) Transgenic apple transformed by sorbitol-6-phosphate dehydrogenase cDNA switch between sorbitol and sucrose supply due to its gene expression. Plant Sci 167:55–61

    CAS  Google Scholar 

  • Kaplan F, Guy CL (2004) β-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol 135:1674–1684

    PubMed  CAS  Google Scholar 

  • Kaplan F, Guy CL (2005) RNA interference of Arabidopsis beta amylase8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. Plant J 44:730–743

    PubMed  CAS  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    PubMed  CAS  Google Scholar 

  • Kavi Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Kawakami A, Sato Y, Yoshida M (2008) Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. J Exp Bot 59:793–802

    PubMed  CAS  Google Scholar 

  • Kaya C, Sönmez O, Aydemir S, Dikilitaş M (2013) Mitigation effects of glycine betaine on oxidative stress and some key growth parameters of maize exposed to salt stress. Turk J Agric For 37:188–194

    CAS  Google Scholar 

  • Kempa S, Krasensky J, Dal Santo S, Kopka J, Jonak C (2008) A central role of abscisic acid in stress-regulated carbohydrate metabolism. PLoS One 3:e3935

    PubMed  Google Scholar 

  • Kerepesi I, Galiba G, Banyai E (1998) Osmotic and salt stresses induced differential alteration in water-soluble carbohydrate content in wheat seedlings. J Agric Food Chem 46:5347–5354

    CAS  Google Scholar 

  • Kintisch E (2009) Global warming: projections of climate change go from bad to worse, scientists report. Science 323:1546–1547

    PubMed  CAS  Google Scholar 

  • Kishor P, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    PubMed  CAS  Google Scholar 

  • Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K, Shinozaki K (1996) A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8:1323–1335

    PubMed  CAS  Google Scholar 

  • Koca M, Bor M, Ozdemir F, Turkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    CAS  Google Scholar 

  • Kotting O, Kossmann J, Zeeman SC, Lloyd JR (2010) Regulation of starch metabolism: the age of enlightenment? Curr Opin Plant Biol 13:321–329

    PubMed  Google Scholar 

  • Kovacs Z, Simon-Sarkadi L, Szucs A, Kocsy G (2010) Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat. Amino Acids 38:623–631

    PubMed  CAS  Google Scholar 

  • Koyro HW, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer Science and Business Media, Germany, pp 1–28

    Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    PubMed  CAS  Google Scholar 

  • Kumar V, Shriram V, Kishor PBK, Jawali N, Shitole MG (2010) Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnol Rep 4:37–48

    Google Scholar 

  • Kumriaa R, Rajam MV (2002) Ornithine decarboxylase transgene in tobacco affects polyamines, in vitro-morphogenesis and response to salt stress. J Plant Physiol 159:933–990

    Google Scholar 

  • Li HJ, Yang AF, Zhang XC, Gao F, Zhang JR (2007) Improving freezing tolerance of transgenic tobacco expressing sucrose: sucrose 1-fructosyltransferase gene from Lactuca sativa. Cell Tisssue Organ Cult 89:37–48

    CAS  Google Scholar 

  • Li F, Lei H, Zhao X, Tian R, Li T (2012) Characterization of three sorbitol transporter genes in micropropagated apple plants grown under drought stress. Plant Mol Biol Rep 30:123–130

    CAS  Google Scholar 

  • Liang D, Cui M, Wu S, Ma FW (2012) Genomic structure, sub-cellular localization, and promoter analysis of the gene encoding sorbitol-6–phosphate dehydrogenase from apple. Plant Mol Biol Rep 30:904–914

    CAS  Google Scholar 

  • Liu C, Zhao L, Yu G (2011) The dominant glutamic acid metabolic flux to produce gamma-amino butyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity. J Integr Plant Biol 53:608–618

    PubMed  CAS  Google Scholar 

  • Livingston DP, Hincha DK, Heyer AG (2009) Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci 66:2007–2023

    PubMed  CAS  Google Scholar 

  • Llanes A, Bertazza G, Palacio G, Luna V (2013) Different sodium salts cause different solute accumulation in the halophyte Prosopis strombulifera. Plant Biol 15:118–125

    PubMed  CAS  Google Scholar 

  • Loescher WH, Tyson RH, Everard JD, Redgwell RJ, Bieleski RL (1992) Mannitol synthesis in higher plants: evidence for the role and characterization of a NADPH-dependent mannose 6-phosphate reductase. Plant Physiol 98:1396–1402

    PubMed  CAS  Google Scholar 

  • Lopez M, Tejera NA, Iribarne C, Lluch C, Herrera-Cervera JA (2008) Trehalose and trehalase in root nodules of Medicago truncatula and Phaseolus vulgaris in response to salt stress. Physiol Plant 134:575–582

    PubMed  CAS  Google Scholar 

  • Lugan R, Niogret MF, Leport L, Guegan JP, Larher F, Savoure A, Kopka J, Bouchereau A (2010) Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. Plant J 64:215–229

    PubMed  CAS  Google Scholar 

  • Madden TD, Bally MB, Hope MJ, Cullis PR, Schieren HP, Janoff AS (1985) Protection of large unilamellar vesicles by trehalose during dehydration: retention of vesicle contents. Biochim Biophys Acta 817:67–74

    PubMed  CAS  Google Scholar 

  • Maevskaya SN, Nikolaeva MK (2013) Response of antioxidant and osmoprotective systems of wheat seedlings to drought and rehydration. Russ J Plant Physiol 60:343–350

    CAS  Google Scholar 

  • Majumder AL, Johnson MD, Henry SA (1997) 1L-myo-inositol-1-phosphate synthase. Biochim Biophys Acta 1348:245–256

    PubMed  CAS  Google Scholar 

  • Majumder AL, Sengupta S, Goswami S (2010) Osmolyte regulation in abiotic stress. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer Science Business Media BV, Germany, pp 349–370

    Google Scholar 

  • Miller G, Honig A, Stein H, Suzuki N, Mittler R, Zilberstein A (2009) Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem 284:26482–26492

    PubMed  CAS  Google Scholar 

  • Mishra S, Dubey RS (2006) Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: role of proline as enzyme protectant. J Plant Physiol 163:927–936

    PubMed  CAS  Google Scholar 

  • Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99:1161–1173

    PubMed  CAS  Google Scholar 

  • N’Guyen A, Lamant A (1988) Pinitol and myo-inositol accumulation in waterstressed seedling of maritime pine. Phytochemistry 27:3423–3427

    Google Scholar 

  • Nawaz K, Ashraf M (2010) Exogenous application of glycine betaine modulates activities of antioxidants in maize plants subject to salt stress. J Agron Crop Sci 196:28–37

    CAS  Google Scholar 

  • Nelson DE, Koukoumanos M, Bohnert HJ (1999) Myo-inositol-dependent sodium uptake in ice plant. Plant Physiol 119:165–172

    PubMed  CAS  Google Scholar 

  • Nounjan N, Theerakulpisut P (2012) Effects of exogenous proline and trehalose on physiological responses in rice seedlings during salt-stress and after recovery. Plant Soil Environ 58:309–315

    CAS  Google Scholar 

  • Nounjan N, Nghia PT, Theerakulpisut P (2012) Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169:596–604

    PubMed  CAS  Google Scholar 

  • Olien CR, Clark JL (1995) Freeze-induced changes in carbohydrates associated with hardiness of barley and rye. Crop Sci 35:496–502

    CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Safe 60:324–349

    CAS  Google Scholar 

  • Park EJ, Jeknic Z, Sakamoto A, DeNoma J, Yuwansiri R, Murata N, Chen TH (2004) Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J 40:474–487

    PubMed  CAS  Google Scholar 

  • Park EJ, Jeknic Z, Chen TH, Murata N (2007) The codA transgene for glycinebetaine synthesis increases the size of flowers and fruits in tomato. Plant Biotechnol J 5:422–430

    PubMed  CAS  Google Scholar 

  • Patra B, Ray S, Richter A, Majumder AL (2010) Enhanced salt tolerance of transgenic tobacco plants by coexpression of PcINO1 and McIMT1 is accompanied by increased level of myo-inositol and methylated inositol. Protoplasma 245:143–152

    PubMed  CAS  Google Scholar 

  • Paul MJ, Cockburn W (1989) Pinitol, a compatible solute in Mesembryanthemum crystallinum L.? J Exp Bot 40:1093–1098

    CAS  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    PubMed  CAS  Google Scholar 

  • Pilonsmits EAH, Ebskamp MJM, Paul MJ, Jeuken MJW, Weisbeek PJ, Smeekens SCM (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107:125–130

    CAS  Google Scholar 

  • Pommerrenig B, Papini-Terzi FS, Sauer N (2007) Differential regulation of sorbitol and sucrose loading into the phloem of Plantago major in response to salt stress. Plant Physiol 144:1029–1038

    PubMed  CAS  Google Scholar 

  • Popp M (1984) Chemical composition of Australian mangroves. II. Low molecular weight carbohydrates. Z Pflanzenphysiol 113:411–421

    CAS  Google Scholar 

  • Pramanik MH, Imai R (2005) Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol Biol 58:751–762

    PubMed  CAS  Google Scholar 

  • Premachandra GS, Hahn GT, Rhodes D, Joly RJ (1995) Leaf water relations and solute accumulation in two grain sorghum lines exhibiting contrasting drought tolerance. J Exp Bot 46:1833–1841

    CAS  Google Scholar 

  • Quinet M, Ndayiragije A, Lefevre I, Lambillotte B, Dupont-Gillain CC, Lutts S (2010) Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance. J Exp Bot 61:2719–2733

    PubMed  CAS  Google Scholar 

  • Radhakrishnan R, Lee IJ (2013) Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in Soybean. J Plant Growth Regul 32:22–30

    CAS  Google Scholar 

  • Rammesmayer G, Pichorner H, Adams P, Jensen RG, Bohnert HJ (1995) Characterization of IMT1, myo-inositol-O-methyltransferase, from Mesembryanthemum crystallinum. Arch Biochem Biophys 322:183–188

    PubMed  CAS  Google Scholar 

  • Reguera M, Peleg Z, Blumwald E (2012) Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops. Biochim Biophys Acta 1819:186–194

    PubMed  CAS  Google Scholar 

  • Renault H, Roussel V, El Amrani A, Arzel M, Renault D, Bouchereau A, Deleu C (2010) The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol 10:20

    PubMed  Google Scholar 

  • Renault H, El Amrani A, Berger A, Mouille G, Soubigou-Taconnat L, Bouchereau A, Deleu C (2013) γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots. Plant Cell Environ 36:1009–1018

    PubMed  CAS  Google Scholar 

  • Rizhsky L, Liang HJ, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    PubMed  CAS  Google Scholar 

  • Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4:49–56

    PubMed  CAS  Google Scholar 

  • Rosgen J (2007) Molecular basis of osmolyte effects on protein and metabolites. Methods Enzymol 428:459–486

    PubMed  CAS  Google Scholar 

  • Roychoudhury A, Basu S, Sarkar S, Sengupta D (2008) Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars. Plant Cell Rep 27:1395–1410

    PubMed  CAS  Google Scholar 

  • Rumpho ME, Edwards GE, Loescher WH (1983) A pathway for photosynthetic carbon flow to mannitol in celery leaves: activity and localization of key enzymes. Plant Physiol 73:869–873

    PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88

    PubMed  CAS  Google Scholar 

  • Sanchez DH, Siahpoosh MR, Roessner U, Udvardi M, Kopka J (2008) Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Plant Physiol 132:209–219

    CAS  Google Scholar 

  • Schulze ED, Beck E, Müller-Hohenstein K (2002) Pflanzenökologie. Spektrum Akademischer, Heidelberg

    Google Scholar 

  • Sengupta S, Majumder AL (2009) Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Planta 229:911–929

    PubMed  CAS  Google Scholar 

  • Sengupta S, Patra B, Ray S, Majumder AL (2008) Inositol methyl tranferase from a halophytic wild rice, Porteresia coarctata Roxb. (Tateoka): regulation of pinitol synthesis under abiotic stress. Plant Cell Environ 31:1442–1459

    PubMed  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol 162:854–864

    PubMed  CAS  Google Scholar 

  • Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4:446–452

    PubMed  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol 113:1177–1183

    PubMed  CAS  Google Scholar 

  • Shi J, Fu X, Peng T, Huang X, Fan Q, Liu J (2010) Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiol 30:914–922

    PubMed  CAS  Google Scholar 

  • Shu S, Yuan LY, Guo SR, Sun J, Yuan YH (2013) Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. Plant Physiol Biochem 63:209–216

    PubMed  CAS  Google Scholar 

  • Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Plant Physiol 132:199–208

    CAS  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    CAS  Google Scholar 

  • Song HM, Xu XB, Wang H, Wang HZ, Tao YZ (2010) Exogenous gamma-aminobutyric acid alleviates oxidative damage caused by aluminium and proton stresses on barley seedlings. J Sci Food Agric 90:1410–1416

    PubMed  CAS  Google Scholar 

  • Sorkheh K, Shiran B, Khodambashi M, Rouhi V, Mosavei S, Sofo A (2012) Exogenous proline alleviates the effects of H2O2 induced oxidative stress in wild almond species. Russ J Plant Physiol 59:788–798

    CAS  Google Scholar 

  • Spollen WG, Nelson CJ (1994) Response of fructan to water-deficit in growing leaves of tall fescue. Plant Physiol 106:329–336

    PubMed  CAS  Google Scholar 

  • Stiller I, Dulai S, Kondrák M, Tarnai R, Szabó L, Toldi O, Bánfalvi Z (2008) Effects of drought on water content and photosynthetic parameters in potato plants expressing the trehalose-6-phosphate synthase gene of Saccharomyces cerevisiae. Planta 227:299–308

    PubMed  CAS  Google Scholar 

  • Stoop JHM, Williamson JD, Pharr DM (1996) Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci 1:139–144

    Google Scholar 

  • Street TO, Bolen DW, Rose GD (2006) A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci U S A 103:13997–14002

    PubMed  CAS  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    PubMed  CAS  Google Scholar 

  • Szekely G, Abraham E, Cseplo A, Rigo G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    PubMed  CAS  Google Scholar 

  • Tari I, Kiss G, Deér AK, Csiszár J, Erdei L, Gallé A, Gémes K, Horváth F, Poór P, Szepesi Á, Simon L (2010) Salicylic acid increased aldose reductase activity and sorbitol accumulation in tomato plants under salt stress. Biol Plant 54:677–683

    CAS  Google Scholar 

  • Tetlow IJ, Morell MK, Emes MJ (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot 55:2131–2145

    PubMed  CAS  Google Scholar 

  • Todaka D, Matsushima H, Morohashi Y (2000) Water stress enhances beta-amylase activity in cucumber cotyledons. J Exp Bot 51:739–745

    PubMed  CAS  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K (2004) Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun 313:369–375

    PubMed  CAS  Google Scholar 

  • Valerio C, Costa A, Marri L, Issakidis-Bourguet E, Pupillo P, Trost P, Sparla F (2011) Thioredoxin-regulated beta-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. J Exp Bot 62:545–555

    PubMed  CAS  Google Scholar 

  • Valluru R, Van den Ende W (2008) Plant fructans in stress environments: emerging concepts and future prospects. J Exp Bot 59:2905–2916

    PubMed  CAS  Google Scholar 

  • Van Houtte H, Vandesteene L, Lopez-Galvis L, Lemmens L, Kissel E, Carpentier S, Feil R, Avonce N, Beeckman T, Lunn JE, Van Dijck P (2013) Overexpression of the trehalase gene AtTRE1 leads to increased drought stress tolerance in Arabidopsis and is involved in abscisic acid-induced stomatal closure. Plant Physiol 161:1158–1171

    PubMed  Google Scholar 

  • Vijn I, Smeekens S (1999) Fructan: more than a reserve carbohydrate? Plant Physiol 120:351–359

    PubMed  CAS  Google Scholar 

  • Vogel G, Aeschbacher RA, Muller J, Boller T, Wiemken A (1998) Trehalose-6-phosphate phosphatases from Arabidopsis thaliana: identification by functional complementation of the yeast tps2 mutant. Plant J 13:673–683

    PubMed  CAS  Google Scholar 

  • Vogel G, Fiehn O, Jean-Richard-dit-Bressel L, Boller T, Wiemken A, Aeschbacher RA, Wingler A (2001) Trehalose metabolism in Arabidopsis: occurrence of trehalose and molecular cloning and characterization of trehalose-6-phosphate synthase homologues. J Exp Bot 52:1817–1826

    PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    PubMed  CAS  Google Scholar 

  • Wei W, Dai X, Wang Y, Chuan Y, Gou CB, Chen F (2010a) Cloning and expression analysis of 1 L-myo-inositol-1-phosphate synthase gene from Ricinus communis L. Z Naturforsch C 65:501–507

    PubMed  CAS  Google Scholar 

  • Wei A, He CM, Li B, Li N, Zhang JR (2010b) The pyramid of transgenes TsVP and BetA effectively enhances the drought tolerance of maize plants. Plant Biotechnol J 9:216–229

    Google Scholar 

  • Wood AJ, Saneoka H, Rhodes D, Joly RJ, Goldsbrough PB (1996) Betaine aldehyde dehydrogenase in sorghum. Plant Physiol 110:1301–1308

    PubMed  CAS  Google Scholar 

  • Wormit A, Trentmann O, Feifer I, Lohr C, Tjaden J, Meyer S, Schmidt U, Martinoia E, Neuhaus HE (2006) molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. Plant Cell 18:3476–3490

    PubMed  CAS  Google Scholar 

  • Yamada Y, Fukutoku Y (1985) Effect of water stress on soybean metabolism. In: Shanmugasundaram S, Sulzberger EW, Mclean BJ (eds) Soybean in tropical and subtropical cropping systems. Asian Vegetation Research and Development Center, Shanhua, Taiwan, pp 373–382

    Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Miyazaki A, Takahashi T, Michael A, Kusano T (2006) The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett 580:6783–6788

    PubMed  CAS  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    PubMed  CAS  Google Scholar 

  • Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66:73–86

    PubMed  CAS  Google Scholar 

  • Yang SL, Lan SS, Gong M (2009) Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. J Plant Physiol 166:1694–1699

    PubMed  CAS  Google Scholar 

  • Yano R, Nakamura M, Yoneyama T, Nishida I (2005) Starch related alpha-glucan/water dikinase is involved in the cold-induced development of freezing tolerance in Arabidopsis. Plant Physiol 138:837–846

    PubMed  CAS  Google Scholar 

  • Yoshida KT, Wada T, Koyama H, Mizobuchi-Fukuoka R, Naito S (1999) Temporal and spatial patterns of accumulation of the transcript of Myo-inositol-1-phosphate synthase and phytin-containing particles during seed development in rice. Plant Physiol 119:65–72

    PubMed  CAS  Google Scholar 

  • Yoshida KT, Fujiwara T, Naito S (2002) The synergistic effects of sugar and abscisic acid on myo-inositol-1-phosphate synthase expression. Physiol Plant 114:581–587

    PubMed  CAS  Google Scholar 

  • Zeeman SC, Thorneycroft D, Schupp N, Chapple A, Weck M, Dunstan H, Haldimann P, Bechtold N, Smith AM, Smith SM (2004) Plastidial alpha-glucan phosphorylase is not required for starch degradation in Arabidopsis leaves but has a role in the tolerance of abiotic stress. Plant Physiol 135:849–858

    PubMed  CAS  Google Scholar 

  • Zhang J, Ta W, Yang XH, Zhang HX (2008) Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco. Plant Cell Rep 27:1113–1124

    PubMed  CAS  Google Scholar 

  • Zhang Y, Hu XH, Shi Y, Zou ZR, Yan F, Zhao YY, Zhang H, Zhao JZ (2013) Beneficial role of exogenous spermidine on nitrogen metabolism in tomato seedlings exposed to saline-alkaline stress. J Am Soc Hortic Sci 138:38–49

    CAS  Google Scholar 

  • Zhifang G, Loescher WH (2003) Expression of a celery mannose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and indices biosynthesis of both mannitol and a glucosyl-mannitol dimer. Plant Cell Environ 26:275–283

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Laszlo SZABADOS (Institute of Plant Biology, Biological Research Center, Szeged, Hungary) for his precious help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aykut Sağlam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sağlam, A., Jan, S. (2014). Importance of Protective Compounds in Stress Tolerance. In: Ahmad, P., Wani, M. (eds) Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8600-8_9

Download citation

Publish with us

Policies and ethics