Skip to main content

Cash Crop Halophytes: The Ecologically and Economically Sustainable Use of Naturally Salt-Resistant Plants in the Context of Global Changes

  • Chapter
  • First Online:
Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment

Abstract

Global climate change—caused by rising atmospheric concentrations of trace gases such as CO2—brings about increased desertification, soil salinisation and degradation, which will lead to unhealthy living conditions. There will be a shortage of freshwater, especially in arid regions. Furthermore, artificial irrigation with saline water in an unprofessional manner leads to an increasing salinisation of usable areas and to economic damage. Increased soil salinity poses a serious threat to agriculture because most conventional crops are salt-sensitive glycophytes. A promising solution to these problems is the sustainable cultivation of halophytes (naturally salt-resistant plants) on salt-affected soils under saline irrigation.

This article reviews the most important aspects regarding the sustainable use of halophytes including the general problem of soil salinity, the biology and ecology of halophytes and the prerequisites and possibilities of halophyte utilisation and of saline production systems. For the first time, the cultivation of halophytes is reviewed in detail in the context of both NaCl salinity and global change/elevated CO2 concentration. The major points are the following: (1) Halophytes often show an enhanced salt resistance and/or productivity under future rising atmospheric CO2 concentrations, and their cultivation can sequester CO2, so these plants are very promising future crops and well suited to ameliorate the consequences of global change. (2) A precondition for the sustainable use of halophytes is detailed knowledge of individual resistance mechanisms, the food or fodder quality and the performance under new climate change scenarios. This information can be obtained by growing the species in question in a so-called quick check system. (3) Several promising projects regarding the sustainable use of halophytes are in progress worldwide, but they are still in their infancy and need to be further developed as their advantages are immense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FAO:

Food and Agriculture Organization of the United Nations

IPPC:

Intergovernmental Panel on Climate Change

ppm:

Parts per million

UNEP:

United Nations Environment Programme

References

  • Arnalds A (2004) Carbon sequestration and the restoration of land health. An example from Iceland. Clim Change 65:333–346

    Article  CAS  Google Scholar 

  • Ball MC, Munns R (1992) Plant responses to salinity under elevated atmospheric concentrations of CO2. Aust J Bot 40:515–525

    Article  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 1158–1203

    Google Scholar 

  • Caçador I, Costa L, Vale C (2002) The importance of halophytes in carbon cycling in salt marshes. In: Xiaojing L, Mengyu L (eds) Halophyte utilization and regional sustainable development of agriculture. Weather Press, Beijing, p 199

    Google Scholar 

  • Dansereau P (1957) Biogeography: an ecological perspective. Ronald Press, New York

    Google Scholar 

  • Debez A, Braun HP, Pich A, Taalmalli W, Koyro HW, Abdelly C, Huchzermeyer B (2012) Proteomic and physiological responses of the halophyte Cakile maritima to moderate salinity at the germinative and vegetative stages. J Proteomics 75:5667–5694

    Article  CAS  PubMed  Google Scholar 

  • Deutsche Stiftung Weltbevölkerung (DSW) (2012a) Published on DSW website. http://www.weltbevoelkerung.de/informieren/unsere-themen/bevoelkerungsdynamik/mehr-zum-thema/bevoelkerungsentwicklung.html. Accessed 30 Oct 2012

  • Deutsche Stiftung Weltbevölkerung (DSW) (2012b) Published on DSW website. http://www.weltbevoelkerung.de/uploads/tx_tspagefileshortcut/FS_Entw_Projekt_web.pdf. Accessed 30 Oct 2012

  • Evans LT (2005) Is crop improvement still needed? J Crop Improv 14:1–7

    Article  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Article  Google Scholar 

  • Geissler N, Hussin S, Koyro HW (2009a) Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environ Exp Bot 65:220–231

    Article  CAS  Google Scholar 

  • Geissler N, Hussin S, Koyro HW (2009b) Elevated atmospheric CO2 concentration ameliorates effects of NaCl salinity on photosynthesis and leaf structure of Aster tripolium L. J Exp Bot 60:137–151

    Article  CAS  PubMed  Google Scholar 

  • Geissler N, Hussin S, Koyro HW (2010) Elevated atmospheric CO2 concentration enhances salinity tolerance in Aster tripolium L. Planta 231:583–594

    Article  CAS  PubMed  Google Scholar 

  • Geissler N, Huchzermeyer B, Koyro HW (2013) Effect of salt stress on photosynthesis under ambient and elevated atmospheric CO2 concentration. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants: signalling, omics and adaptations. Springer, New York, pp 377–413

    Chapter  Google Scholar 

  • Glenn EP, O’Leary JW, Watson MC, Thompson TL, Kuehl RO (1991) Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science 251:1065–1067

    Article  CAS  PubMed  Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Güth M (2001) Halophyte uses in different climates. III. Computer-aided analysis of socio-economic aspects of the sustainable utilization of halophytes. Progress in biometeorology, vol 15. Backhuys, Leiden

    Google Scholar 

  • Huchzermeyer B (2011) Salztoleranz bei Halophyten: Grundlagen der Anpassung von Pflanzen an ihre Umwelt. In: Bavarian Academy of Sciences (ed) Leben unter extremen Bedingungen. Rundgespräche der Kommission für Ökologie 39. Pfeil, Munich

    Google Scholar 

  • Hussin S, Geissler N, Koyro HW (2013) Effect of NaCl salinity on Atriplex nummularia (L.) with special emphasis on carbon and nitrogen metabolism. Acta Physiol Plant 35:1025–1038

    Article  CAS  Google Scholar 

  • Ignatova LK, Novichkova NS, Mudrik VA, Lyubimov VY, Ivanov BN, Romanova AK (2005) Growth, photosynthesis, and metabolism of sugar beet at an early stage of exposure to elevated CO2. Russ J Plant Physiol 52:158–164

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007. The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, NY

    Google Scholar 

  • Khan S, Khan MA, Hanjra MA, Mu J (2009a) Pathways to reduce the environmental footprints of water and energy inputs in food production. Food Policy 34:141–149

    Article  Google Scholar 

  • Khan MA, Ansari R, Ali H, Gul B, Nielsen BL (2009b) Panicum turgidum, a potentially sustainable cattle feed alternative to maize for saline areas. Agr Ecosyst Environ 129:542–546

    Article  Google Scholar 

  • Kirschbaum MUF (2004) Direct and indirect climate change effects on photosynthesis and transpiration. Plant Biol 6:242–253

    Article  CAS  PubMed  Google Scholar 

  • Koyro HW, Lieth H (1989) Salinity conversion table, 5th enlarged edn. H. Lieth, Osnabrück

    Google Scholar 

  • Koyro HW, Lieth H (2008) Global water crisis: the potential of cash crop halophytes to reduce the dilemma. In: Lieth H, Sucre MG, Herzog B (eds) Mangroves and halophytes: restoration and utilization. Tasks for vegetation science, vol 43. Springer, Dordrecht, pp 7–20

    Chapter  Google Scholar 

  • Koyro HW, Geissler N, Hussin S, Huchzermeyer B (2006) Mechanisms of cash crop halophytes to maintain yield and reclaim soils in arid areas. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Tasks for vegetation science, vol 40. Springer, Dordrecht, pp 345–366

    Chapter  Google Scholar 

  • Koyro HW, Geissler N, Hussin S, Debez A, Huchzermeyer B (2008) Survival at extreme locations: life strategies of halophytes: the long way from system ecology, whole plant physiology, cell biochemistry and molecular aspects back to sustainable utilization at field sites. In: Abdelly C, Öztürk M, Ashraf M, Grignon C (eds) Biosaline agriculture and high salinity tolerance. Birkhäuser, Basel, pp 1–20

    Chapter  Google Scholar 

  • Koyro HW, Daoud S, Harrouni MC (2013a) Salt response of some halophytes with potential interest in reclamation of saline soils: gas exchange, water use efficiency and defence mechanism. In: Shahid SA, Abdelfattah MA, Taha FK (eds) Developments in soil salinity assessment and reclamation. Innovative thinking and use of marginal soil and water resources in irrigated agriculture. Springer, Dordrecht, pp 523–542

    Chapter  Google Scholar 

  • Koyro HW, Hussain T, Huchzermeyer B, Khan MA (2013b) Photosynthetic and growth responses of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations. Environ Exp Bot 91:22–29

    Article  CAS  Google Scholar 

  • Künnemann TD, Gad G (1997) Überleben zwischen Land und Meer: Salzwiesen. Verlag Isensee, Oldenburg

    Google Scholar 

  • Läuchli A (1984) Salt exclusion: an adaptation of legumes for crops and pastures under saline conditions. In: Toenniessen GH, Staples RC (eds) Salinity tolerance in plants. Strategies for crop improvement. Wiley, New York, pp 171–187

    Google Scholar 

  • Läuchli A, Epstein E (1984) Mechanisms of salt tolerance in plants. Calif Agric 38:18–20

    Google Scholar 

  • Le Houerou HN (1993) Forage halophytes in the Mediterranean basin. In: Choukr-Allah R, Hamdy A (eds) Advanced course on halophyte utilization in agriculture. Hassan II University, Agadir, pp 405–436

    Google Scholar 

  • Li JH, Dugas WA, Hymus GJ, Johnson DP, Hinkle CR, Drake BG, Hungate BA (2003) Direct and indirect effects of elevated CO2 on transpiration from Quercus myrtifolia in a scrub-oak ecosystem. Glob Chang Biol 9:96–105

    Article  Google Scholar 

  • Lieth H (1999) Development of crops and other useful plants from halophytes. In: Lieth H, Moschenko M, Lohmann M, Koyro HW, Hamdy A (eds) Halophyte uses in different climates. I. Ecological and ecophysiological studies. Backhuys, Kerkwerve

    Google Scholar 

  • Lieth H (ed) (2000) Sustainable halophyte utilization in the Mediterranean and subtropical dry regions. Final report. CEC concerted action: sustainable halophyte utilization in the Mediterranean and subtropical dry regions

    Google Scholar 

  • Lieth H, Lohmann M (eds) (2000) Cash crop halophytes for future halophyte growers. Lieth, Institut für Umweltsystemforschung (IUSF), University of Osnabrück, no. 20. ISSN 09336-3114

    Google Scholar 

  • Lieth H, Mochtschenko M (eds) (2003) Cash crop halophytes. Recent studies. Kluwer, Dordrecht

    Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Miyamoto S (1996) Salt tolerance, water use and potential irrigation scheduling of halophytes. In: Malcolm CV, Hamdy A, Choukr-Allah R (eds) Halophytes and biosaline agriculture. Marcel Dekker, New York, pp 181–220

    Google Scholar 

  • Morgan JA, Lecain DR, Mosier AR, Milchunas DG (2001) Elevated CO2 enhances water relations and productivity and affects gas exchange in C3 and C4 grasses of the Colorado shortgrass steppe. Glob Chang Biol 7:451–466

    Article  Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Odum EP (1974) Halophytes, energetics and ecosystems. In: Queen WH, Reimold RJ (eds) Ecology of halophytes. Academic, New York, pp 599–602

    Google Scholar 

  • Ozgur R, Uzilday B, Sekmen A (2013) Reactive oxygen species regulation and antioxidant defence in halophytes. Published on Functional Plant Biology website. http://www.publish.csiro.au/view/journals/dsp_journals_pip_abstract_Scholar1.cfm?nid=102&pip=FP12389. Accessed 10 Apr 2013 (in press)

  • Pérez-López U, Robredo A, Lacuesta M, Mena-Petite A, Muňoz-Rueda A (2012) Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare. Photosynth Res 111:269–283

    Article  PubMed  Google Scholar 

  • Rabhi M, Castagna A, Remorini D, Scattino C, Smaoui A, Ranieri A, Abdelly C (2011) Photosynthetic responses to salinity in two obligate halophytes: Sesuvium portulacastrum and Tecticornia indica. S Afr J Bot 79:39–47

    Article  Google Scholar 

  • Robredo A, Pérez-López U, de la Maza HS, González-Moro B, Lacuesta M, Mena-Petite A, Muňos-Rueda A (2007) Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. Environ Exp Bot 59:252–263

    Article  CAS  Google Scholar 

  • Rogers A, Allen DJ, Davey PA, Morgan PB, Ainsworth EA, Bernacchi CJ, Cornic G, Dermody O, Dohleman FG, Heaton EA, Mahoney J, Zhu XG, Delucia EH, Ort DR, Long SP (2004) Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their life-cycle under free-air carbon dioxide enrichment. Plant Cell Environ 27:449–458

    Article  CAS  Google Scholar 

  • Rozema J (1993) Plant responses to atmospheric carbon dioxide enrichment: interactions with some soil and atmospheric conditions. Vegetatio 104(105):173–190

    Article  Google Scholar 

  • Rozema J, Flowers TJ (2008) Crops for a salinized world. Science 322:1478–1480

    Article  CAS  PubMed  Google Scholar 

  • Schachtman DP, Munns R (1992) Sodium accumulation in leaves of Triticum species that differ in salt tolerance. Aust J Plant Physiol 19:331–340

    Article  CAS  Google Scholar 

  • Schimper AFW (1898) Pflanzengeographie auf physiologischer Grundlage. Fischer, Jena

    Google Scholar 

  • Schimper AFW (1903) Plant-geography upon a physiological basis. Clarendon, Oxford

    Google Scholar 

  • Schubert S (1999) Anpassung von Mais (Zea mays L.) an Bodensalinität: Strategien und Konzepte. In: Merbach W, Wittenmayer L, Augustin J (eds) Stoffumsatz im wurzelnahen Raum. 9. Borkheider Seminar zur Ökophysiologie des Wurzelraumes. Teubner, Stuttgart, pp 74–79

    Chapter  Google Scholar 

  • Schulze ED, Beck E, Müller-Hohenstein K (2002) Pflanzenökologie. Spektrum Akademischer, Heidelberg

    Google Scholar 

  • Schwanz P, Picon C, Vivin P, Dreyer D, Guehl J, Polle A (1996) Responses of antioxidative systems to drought stress in pendunculate oak and maritime pine as modulated by elevated CO2. Plant Physiol 110:393–402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stanton BR, Perkins AS, Tessarollo L, Sassoon DA, Parada LF (1992) Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. Genes Dev 6:2235–2247

    Article  CAS  PubMed  Google Scholar 

  • UNEP (1993) Halophytes for livestock, rehabilitation of degraded land and sequestering atmospheric carbon. United Nations Environment Programme (UNEP), Nairobi

    Google Scholar 

  • Urban O (2003) Physiological impacts of elevated CO2 concentration ranging from molecular to whole plant responses. Photosynthetica 41:9–20

    Article  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Cellular basis of salinity tolerance in plants. Environ Exp Bot 52:113–122

    Google Scholar 

  • Von Sengbusch P (2003) Halophytes. Published on Botany online. http://www.biologie.uni-hamburg.de/b-online/e56/56d.htm. Accessed 30 Oct 2012

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Heckathorn A, Wang X, Philpott SM (2012) A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia 169:1–13

    Article  PubMed  Google Scholar 

  • Wullschleger SD, Tschaplinski TJ, Norby RJ (2002) Plant water relations at elevated CO2: implications for water-limited environments. Plant Cell Environ 25:319–331

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Jürgen Franz, Mr. Wolfgang Stein, Mr. Gerhard Mayer, Mrs. Angelika Bölke, Mrs. Gerlinde Lehr and Mrs. Nikol Strasilla for technical assistance regarding the quick check experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Geissler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Geissler, N., Lieth, H., Koyro, HW. (2014). Cash Crop Halophytes: The Ecologically and Economically Sustainable Use of Naturally Salt-Resistant Plants in the Context of Global Changes. In: Ahmad, P., Wani, M. (eds) Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8591-9_7

Download citation

Publish with us

Policies and ethics