Advertisement

Impulsive Differential Equations

  • Marat Akhmet
  • Enes Yılmaz
Chapter
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 9)

Abstract

Let \(\mathbb{R},\, \mathbb{N}\), and \(\mathbb{Z}\) be the sets of all real numbers, natural numbers, and integers, respectively. Denote by \(\theta =\{\theta _{i}\}\) a strictly increasing sequence of real numbers such that the set \(\mathcal{A}\) of indexes i is an interval in \(\mathbb{Z}.\) The sequence θ is a B−sequence, if one of the following alternatives is valid:

References

  1. 23.
    Akhmet M (2010) Principles of discontinuous dynamical systems. Springer, New YorkCrossRefMATHGoogle Scholar
  2. 26.
    Akhmetov MU (1982) On periodic solutions of certain systems of differential equations. Vestn Kiev Univer Mat i Mekh (Russian) 24:3–7MathSciNetGoogle Scholar
  3. 28.
    Akhmetov MU (1991) Periodic solutions of non-autonomous systems of differential equations with impulse action in the critical case. (Russian) Izv Akad Nauk Kazakh SSR Seria Fiz-Mat 3:62–65Google Scholar
  4. 32.
    Akhmetov MU, Perestyuk NA (1984) On the almost periodic solutions of a class of systems with impulse effect. (Russian) Ukr Mat Zh 36:486–490Google Scholar
  5. 35.
    Akhmetov MU, Perestyuk NA (1992) Periodic and almost-periodic solutions of strongly nonlinear impulse systems. J Appl Math Mech 56:829–837MathSciNetCrossRefGoogle Scholar
  6. 47.
    Akhmetov MU, Perestyuk NA, Samoilenko AM (1983) Almost-periodic solutions of differential equations with impulse action. (Russian) Akad Nauk Ukrain SSR Inst Mat 49:26 (preprint)Google Scholar
  7. 51.
    Andronov AA, Chaikin CE (1949) Theory of oscillations. Princeton University Press, PrincetonGoogle Scholar
  8. 56.
    Aymerich G (1952) Sulle oscillazioni autosostenute impulsivamente. Rend Semin Fac Sci Univ Cagliari 22:34–37MathSciNetGoogle Scholar
  9. 57.
    Bainov DD, Simeonov PS (1985) Stability under persistent disturbances for systems with impulse effect. J Math Anal Appl 109:546–563MathSciNetCrossRefGoogle Scholar
  10. 127.
    Halanay A, Wexler D (1968) Qualitative theory of impulsive systems. Edit Acad RPR, Bucuresti, (in Romanian)Google Scholar
  11. 133.
    Hcu CS, Cheng WH (1973) Applications of the theory of impulsive parametric excitation and new treatment of general parametric excitations problems. Trans. ASME, 40:2174–2181Google Scholar
  12. 155.
    Kaul S (1990) On impulsive semidynamical systems. J Math Anal Appl 150:120–128MathSciNetCrossRefMATHGoogle Scholar
  13. 171.
    Lakshmikantham V, Bainov DD, Simeonov PS (1989) Theory of impulsive differential equations. Modern applied mathematics, World Scientific, SingaporeCrossRefMATHGoogle Scholar
  14. 182.
    Liu X, Pirapakaran R (1989) Global stability results for impulsive differential equations. Appl Anal 33:87–102MathSciNetCrossRefMATHGoogle Scholar
  15. 191.
    Minorsky N (1962) Nonlinear oscillations. Van Nostrand, PrincetonMATHGoogle Scholar
  16. 198.
    Myshkis AD (1977) On certain problems in the theory of differential equations with deviating argument. Russian Math. Surv 32:181–213CrossRefMATHGoogle Scholar
  17. 199.
    Myshkis AD, Samoilenko AM (1967) Systems with impulses at fixed moments of time. (Russian) Math Sb 74:202–208Google Scholar
  18. 201.
    Neimark YI (1972) The method of point transformations in the theory of nonlinear oscillations. (Russian) Nauka, MoscowGoogle Scholar
  19. 218.
    Pavlidis T (1966) Stability of a class of discontinuous dynamical systems. Informat Cont 9:298–322MathSciNetCrossRefMATHGoogle Scholar
  20. 219.
    Pavlidis T, Jury EI (1965) Analysis of a new class of pulse-frequency modulated feedback systems. IEEE Trans Automat Control 10(1):35–43CrossRefGoogle Scholar
  21. 227.
    Samoilenko AM, Perestyuk NA (1974) Second N.N. Bogolyubov’s theorem for impulsive differential equations. (Russian) Differentsial’nye uravneniya 10:2001–2010Google Scholar
  22. 230.
    Samoilenko AM, Perestyuk NA (1981) On stability of solutions of impulsive systems. (Russian) Differentsial’nye uravneniya 17:1995–2002Google Scholar
  23. 231.
    Samoilenko AM, Perestyuk NA (1995) Impulsive differential equations. World Scientific, SingaporeMATHGoogle Scholar
  24. 233.
    Sansone G (1957) Sopra una equazione che si presenta nelle determinazioni della orbite in un sincrotrone. Rend Accad Naz Lincei 8:1–74MathSciNetGoogle Scholar
  25. 240.
    Stallard FW (1955) Differential systems with interface conditions. Oak Ridge National Laboratory Report ORNL, Oak RidgeGoogle Scholar
  26. 241.
    Stallard FW (1962) Functions of bounded variations as solutions of differential systems. Proc Amer Math Soc 13:366–373MathSciNetCrossRefMATHGoogle Scholar
  27. 244.
    Vogel T (1965) Théorie des systémes evolutifs. Gauthier-Villars, ParisMATHGoogle Scholar
  28. 258.
    Wexler D (1966) Solutions périodiques et presque-périodiques des systémes d’équations différetielles linéaires en distributions. J Differ Equat 2:12–32MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Marat Akhmet
    • 1
  • Enes Yılmaz
    • 2
  1. 1.Department of MathematicsMiddle East Technical University (METU) Üniversiteler Mah. DumlupinarAnkaraTurkey
  2. 2.Department of MathematicsAdnan Menderes University Merkez Kampüsü Aytepe MevkiiAydınTurkey

Personalised recommendations