Skip to main content

Monitoring of O2 Uptake and CO2 Elimination During Anesthesia and Surgery

  • Chapter
  • First Online:
Monitoring Technologies in Acute Care Environments

Abstract

Indirect calorimetry, the measurement of pulmonary oxygen uptake (\( {\dot{V}}_{{\mathrm{O}}_2} \)) and carbon dioxide elimination (\( {\dot{V}}_{{\mathrm{CO}}_2} \)), is used extensively in the critical care medicine unit and in exercise physiology testing. However, in anesthesia, metabolic monitoring is mostly confined to the inspired oxygen fraction (to preclude the delivery of hypoxic gas mixture) and to tidal \( {P}_{{\mathrm{CO}}_2} \) monitoring (to ensure a patent airway and to estimate the alveolar \( {P}_{{\mathrm{CO}}_2} \) during mechanical ventilation). The main reason, we believe, for the lack of understanding of metabolic monitoring during anesthesia is that the measurements of \( {\dot{V}}_{{\mathrm{O}}_2} \) and \( {\dot{V}}_{{\mathrm{CO}}_2} \) are challenging in the rebreathing anesthesia circle circuit and there are few accurate measurement devices. In this chapter, we describe the development and implementation of the bymixer, an in-line flow-averaging hydraulic gas mixer, and the fast response humidity and temperature airway sensor. Along with a fast response and accurate airway flow sensor, we have demonstrated accurate and precise bymixer-flow measurements of the \( {\dot{V}}_{{\mathrm{O}}_2} \) and \( {\dot{V}}_{{\mathrm{CO}}_2} \) during extensive validations with a metabolic lung simulator. We believe that there are at least three main areas of clinical interest for the measurements of airway \( {\dot{V}}_{{\mathrm{O}}_2} \) and \( {\dot{V}}_{{\mathrm{CO}}_2} \) during anesthesia and surgery: First, there are many acute perturbations during anesthesia and surgery that can be quickly and noninvasively detected and diagnosed by non-steady-state changes in airway \( {\dot{V}}_{{\mathrm{O}}_2} \) and \( {\dot{V}}_{{\mathrm{CO}}_2} \). Second, we hypothesize that indirect calorimetry can first detect onset of anaerobic lactic acidosis during anesthesia and surgery. Third, we predict that airway \( {\dot{V}}_{{\mathrm{O}}_2} \) and \( {\dot{V}}_{{\mathrm{CO}}_2} \) will be directly affected by the level of anesthesia depth. We plan to test the hypothesis that indirect calorimetry measurements of airway \( {\dot{V}}_{{\mathrm{O}}_2} \) and \( {\dot{V}}_{{\mathrm{CO}}_2} \) will help diagnose and drive treatment of these pathophysiology perturbations and improve patient outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breen PH. Capnography: the science behind the lines. In: A.S.A. 1994 Annual Refresher Course Lectures, American Society of Anesthesiologists, Park Ridge. 1994;126:1–7.

    Google Scholar 

  2. Breen PH. Carbon dioxide kinetics during anesthesia: pathophysiology and monitoring IN respiration in anesthesia: pathophysiology and clinical update. Anesthesiol Clin North Am. 1998;16:259–93.

    Article  Google Scholar 

  3. Isserles SA, Breen PH. Can changes in end-tidal PCO2 measure changes in cardiac output? Anesth Analg. 1991;73:808–14.

    Article  PubMed  CAS  Google Scholar 

  4. Breen PH. Chapter 15: CO2 monitoring during anesthesia. In: Eisenkraft JB, editor. Progress in anesthesiology, vol. 10. San Antonio: Dannemiller; 1996. p. 271–92.

    Google Scholar 

  5. Rosenbaum A, Breen PH. Importance and interpretation of fast-response airway hygrometry during ventilation of anesthetized patients. J Clin Monit Comput. 2007;21:137–46.

    Article  PubMed  Google Scholar 

  6. Rosenbaum A, Kirby CW, Breen PH. Bymixer system can measure O2 uptake and CO2 elimination in the anesthesia circle circuit. Can J Anaesth. 2007;54:430–40.

    Article  PubMed  Google Scholar 

  7. Rosenbaum A, Howard HC, Breen PH. Novel portable device measures preoperative patient metabolic gas exchange. Anesth Analg. 2008;106:509–16.

    Article  PubMed  Google Scholar 

  8. Rosenbaum A, Kirby C, Breen PH. Measurement of oxygen uptake and carbon dioxide elimination utilizing the bymixer: validation in a metabolic lung simulator. Anesthesiology. 2004;100:1427–37.

    Article  PubMed  CAS  Google Scholar 

  9. Breen PH. Importance of temperature and humidity in the measurement of pulmonary oxygen uptake per breath during anesthesia. Ann Biomed Eng. 2000;28:1159–64.

    Article  PubMed  CAS  Google Scholar 

  10. Breen PH, Serina ER, Barker SJ. Measurement of pulmonary CO2 elimination must exclude inspired CO2 measured at the capnometer sampling site. J Clin Monit. 1996;12:231–6.

    Article  PubMed  CAS  Google Scholar 

  11. Breen PH, Isserles SA, Taitelman UZ. Non-steady state monitoring by respiratory gas exchange. J Clin Monit. 2000;16:351–60. special Respiration Review issue.

    Article  CAS  Google Scholar 

  12. Breen PH, Serina ER. Bymixer provides on-line calibration of measurement of CO2 volume exhaled per breath. Ann Biomed Eng. 1997;25:164–71.

    Article  PubMed  CAS  Google Scholar 

  13. Rosenbaum A, Breen PH. Heat and moisture exchanger in the anesthesia circle circuit: evaluation by a new fast response humidity and temperature sensor. (personal communication).

    Google Scholar 

  14. Rosenbaum A, Breen PH. Novel, adjustable, clinical bymixer measures mixed expired gas concentrations in anesthesia circle circuit. Anesth Analg. 2003;97:1414–20.

    Article  PubMed  Google Scholar 

  15. Crow, Daniel N., Cary Dean, Elizabeth Dykstra-Erickson, J. Peter Hoddie, Steven P. Jobs, and Timothy E. Wasko. “United States Patent: 8196043 - User interface for presenting media information”, June 5, 2012.

    Google Scholar 

  16. Breen PH. Bymixer apparatus and method for fast-response adjustable measurement of mixed gas fractions in ventilation circuits. U.S. continuation in part patent application (USPTO Serial No. 12/874,630). Filing Date: September 2, 2010.

    Google Scholar 

  17. Breen PH, Isserles SA, Harrison BA, Roizen MF. Simple, computer measurement of pulmonary VCO2 per breath. J Appl Physiol. 1992;72:2029–35.

    PubMed  CAS  Google Scholar 

  18. Breen PH. Comparison of end-tidal PCO2 and average alveolar expired PCO2 during positive end-expiratory pressure [letter response]. Anesth Analg. 1997;84:1393–4.

    Google Scholar 

  19. Breen PH, Mazumdar B, Skinner SC. Capnometer transport delay: measurement and clinical implications. Anesth Analg. 1994;78:584–6.

    Article  PubMed  CAS  Google Scholar 

  20. Rosenbaum A, Breen PH. Measurement of airway VO2 and VCO2 in the anesthesia circle circuit by the Datex M-COVX monitor. Abstract P-9109, Proceedings of the New York State Society of Anesthesiologists Annual Post-Graduate Assembly, New York, 2011.

    Google Scholar 

  21. Breen PH. Fast response humidity and temperature sensor device. United States Patent No. 6,014,890, 18 Jan 2000, 14p.

    Google Scholar 

  22. Rosenbaum A, Kirby C, Breen PH. New metabolic lung simulator: development, description, and validation. J Clin Monit Comput. 2007;21:71–82.

    Article  PubMed  Google Scholar 

  23. Breen PH. How do changes in exhaled CO2 measure changes in cardiac output? A numerical analysis model. J Clin Monit Comput. 2010;24:413–9.

    Article  PubMed  Google Scholar 

  24. Breen PH, Mazumdar B, Skinner SC. Comparison of end-tidal PCO2 and average alveolar expired PCO2 during positive end-expiratory pressure. Anesth Analg. 1996;82:368–73.

    PubMed  CAS  Google Scholar 

  25. Breen PH, Mazumdar B, Skinner SC. Carbon dioxide elimination measures resolution of experimental pulmonary embolus in dogs. Anesth Analg. 1996;83:247–53.

    PubMed  CAS  Google Scholar 

  26. Breen PH. Can capnography detect bronchial flap-valve obstruction? J Clin Monit Comput. 1998;14:265–70.

    PubMed  CAS  Google Scholar 

  27. Breen PH, Mazumdar B. How does positive end-expiratory pressure decrease CO2 elimination from the lung? Respir Physiol. 1996;103:233–42.

    Article  PubMed  CAS  Google Scholar 

  28. Johnson JL, Breen PH. How does positive end-expiratory pressure decrease pulmonary CO2 elimination in anesthetized patients? Respir Physiol. 1999;118:227–36.

    Article  PubMed  CAS  Google Scholar 

  29. Breen PH, Mazumdar B, Skinner SC. How does experimental pulmonary embolism decrease CO2 elimination? Respir Physiol. 1996;105:217–24.

    Article  PubMed  CAS  Google Scholar 

  30. Breen PH, Isserles SA, Westley J, Roizen MF, Taitelman UZ. Combined carbon monoxide and cyanide poisoning: a place for treatment? Anesth Analg. 1995;80:671–7.

    PubMed  CAS  Google Scholar 

  31. Breen PH, Isserles SA, Westley J, Roizen MF, Taitelman UZ. Effect of oxygen and thiosulfate during combined carbon monoxide and cyanide poisoning. Toxicol Appl Pharmacol. 1995;134:229–34.

    Article  PubMed  CAS  Google Scholar 

  32. Breen PH, Serina ER, Barker SJ. Exhaled flow monitoring can detect bronchial flap-valve obstruction in a mechanical lung model. Anesth Analg. 1995;81:292–6.

    PubMed  CAS  Google Scholar 

  33. Breen PH, Jacobsen BP. Carbon dioxide spirogram (but not capnogram) detects leaking inspiratory valve in circle circuit. Anesth Analg. 1997;85:1372–6.

    PubMed  CAS  Google Scholar 

  34. Rosenbaum A, Breen PH. Novel airway bymixer-flow measurement of Vco2 and VO2 can detect anaerobic threshold during exercise. Anesth Analg. 2009;108:S-143. Anesth Analg, Manuscript under review.

    Google Scholar 

  35. Breen PH, Mazumdar B, Skinner SC, Taitelman UZ, Isserles SA. Measurement of blood CO2 concentration with a conventional PCO2 analyzer. Crit Care Med. 1996;24:1215–8.

    Article  PubMed  CAS  Google Scholar 

  36. Akhavan R, Breen PH, Rosenbaum A. Airway VCO2 and VO2 measurements detect metabolic disturbances after release of leg tourniquet. In: Proceedings of the annual meeting of the American Society of Anesthesiologists. new orleans, LA. 2009. p. A1290.

    Google Scholar 

  37. Breen PH. Arterial blood gas and pH analysis: clinical approach and interpretation. Anesthesiol Clin North Am. 2001;19:885–906.

    Article  CAS  Google Scholar 

  38. Beroukhim S, Breen, PH, Rosenbaum A. Assessment of adequate intravascular volume status: airway O2 uptake & CO2 elimination versus base deficit. In: Proceedings of the annual meeting of the American Society of Anesthesiologists. san diego, CA. 2010. p. A888.

    Google Scholar 

  39. Rosenbaum A, Howard HC, Breen PH. Anesthesia induction dramatically decreases airway O2 uptake and CO2 elimination. (personal communication).

    Google Scholar 

Download references

Acknowledgements

Supported by National Heart, Lung, and Blood Institute grant HL-42637

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Breen MD, FRCPC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Breen, P.H., Rosenbaum, A. (2014). Monitoring of O2 Uptake and CO2 Elimination During Anesthesia and Surgery. In: Ehrenfeld, J., Cannesson, M. (eds) Monitoring Technologies in Acute Care Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8557-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8557-5_37

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8556-8

  • Online ISBN: 978-1-4614-8557-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics