Advertisement

Mass Spectrometry

  • Igor A. KaltashovEmail author
  • Cedric E. Bobst
Chapter
Part of the Biophysics for the Life Sciences book series (BIOPHYS, volume 6)

Abstract

Mass spectrometry is now an indispensable tool in the armamentarium of molecular biophysics, where it is used for tasks ranging from covalent structure determination to studies of higher order structure, conformational dynamics, and interactions of proteins and other biopolymers. This chapter considers the basics of biological mass spectrometry and highlights recent advances in this field (with particular emphasis on hydrogen exchange, chemical cross-linking, and native electrospray ionization mass spectrometry), evaluates current challenges, and reviews possible future developments.

Keywords

High Order Structure Charge State Distribution Quadrupole Mass Spectrometry Deuterium Content Mass Spectrometry Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Preparation of this manuscript was supported in part by a grant from the National Institutes of Health R01 GM061666. The authors are grateful to Prof. Wendell P. Griffith (University of Toledo), Dr. Rinat R. Abzalimov (University of Massachusetts-Amherst), Dr. Guanbo Wang (Universiteit Utrecht), and Dr. Shunhai Wang (Regeneron, Inc.) for sharing unpublished data sets for this manuscript.

References

  1. 1.
    Thompson JJ (1912) Further experiments on positive rays. Philos Mag 24(140):209–253Google Scholar
  2. 2.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71PubMedGoogle Scholar
  3. 3.
    Fenn JB (2003) Electrospray wings for molecular elephants (Nobel lecture). Angew Chem Int Ed Engl 42(33):3871–3894PubMedGoogle Scholar
  4. 4.
    Dole M, Cox HL, Gieniec J (1973) Electrospray mass spectroscopy. Adv Chem Ser 125:73–84Google Scholar
  5. 5.
    Thomson BA, Iribarne JV, Dzledzic PJ (1982) Liquid ion evaporation/mass spectrometry/mass spectrometry for the detection of polar and labile molecules. Anal Chem 54:2219–2224Google Scholar
  6. 6.
    Alexandrov ML, Baram GI, Gall LN, Krasnov NV, Kusner YS, Mirgorodskaya OA, Nikolaev VI, Shkurov VA (1985) Formation of beams of quasi-molecular ions of peptides from solutions. Bioorg Khim 11(5):700–704Google Scholar
  7. 7.
    Alexandrov ML, Baram GI, Gall LN, Grachev MA, Knorre VD, Krasnov NV, Kusner YS, Mirgorodskaya OA, Nikolaev VI, Shkurov VA (1985) Application of a novel mass spectrometric method to sequencing of peptides. Bioorg Khim 11(5):705–708Google Scholar
  8. 8.
    Meng CK, Mann M, Fenn JB (1988) Of protons or proteins. Z Phys D 10:361–368Google Scholar
  9. 9.
    Kaltashov IA, Abzalimov RR (2008) Do ionic charges in ESI MS provide useful information on macromolecular structure? J Am Soc Mass Spectrom 19(9):1239–1246PubMedGoogle Scholar
  10. 10.
    Tanaka K, Ido Y, Akita S, Yoshida Y, Yoshida T (1987) Detection of high mass molecules by laser desorption time-of-flight mass spectrometry. In Proceedings of the second Japan-China joint symposium on mass spectrometry, Bando Press, Osaka, pp 185–188Google Scholar
  11. 11.
    Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60(20):2299–2301PubMedGoogle Scholar
  12. 12.
    Biemann K (1988) Contributions of mass spectrometry to peptide and protein structure. Biomed Environ Mass Spectrom 16(1–12):99–111PubMedGoogle Scholar
  13. 13.
    Biemann K (1990) Appendix 5. Nomenclature for peptide fragment ions (positive ions). Methods Enzymol 193:886–887PubMedGoogle Scholar
  14. 14.
    McLuckey SA, Wells JM (2001) Mass analysis at the advent of the 21st century. Chem Rev 101(2):571–606PubMedGoogle Scholar
  15. 15.
    Jennings KR (2000) The changing impact of the collision-induced decomposition of ions on mass spectrometry. Int J Mass Spectrom 200(1–3):479–493Google Scholar
  16. 16.
    Little DP, Speir JP, Senko MW, O’Connor PB, McLafferty FW (1994) Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. Anal Chem 66(18):2809–2815PubMedGoogle Scholar
  17. 17.
    Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. J Am Chem Soc 120:3265–3266Google Scholar
  18. 18.
    Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101(26):9528–9533PubMedGoogle Scholar
  19. 19.
    Zubarev RA (2003) Reactions of polypeptide ions with electrons in the gas phase. Mass Spectrom Rev 22(1):57–77PubMedGoogle Scholar
  20. 20.
    Savitski MM, Kjeldsen F, Nielsen ML, Zubarev RA (2006) Complementary sequence preferences of electron-capture dissociation and vibrational excitation in fragmentation of polypeptide polycations. Angew Chem Int Ed 45(32):5301–5303Google Scholar
  21. 21.
    Drees T, Paul W (1964) Beschleunigung von elektronen in einem plasmabetatron. Z Chem 180(4):340–361Google Scholar
  22. 22.
    March RE (1997) An introduction to quadrupole ion trap mass spectrometry. J Mass Spectrom 32(4):351–369Google Scholar
  23. 23.
    Jonscher KR, Yates JR 3rd (1997) The quadrupole ion trap mass spectrometer—a small solution to a big challenge. Anal Biochem 244(1):1–15PubMedGoogle Scholar
  24. 24.
    March RE (1998) Quadrupole ion trap mass spectrometry: theory, simulation, recent developments and applications. Rapid Commun Mass Spectrom 12(20):1543–1554Google Scholar
  25. 25.
    March RE (2000) Quadrupole ion trap mass spectrometry: a view at the turn of the century. Int J Mass Spectrom 200(1–3):285–312Google Scholar
  26. 26.
    Cotter RJ (1999) The new time-of-flight mass spectrometry. Anal Chem 71(13):445A–451APubMedGoogle Scholar
  27. 27.
    Mamyrin BA (2001) Time-of-flight mass spectrometry (concepts, achievements, and prospects). Int J Mass Spectrom 206(3):251–266Google Scholar
  28. 28.
    Cotter RJ (1997) Time-of-flight mass spectrometry: instrumentation and applications in biological research. American Chemical Society, Washington, DCGoogle Scholar
  29. 29.
    Uphoff A, Grotemeyer J (2003) The secrets of time-of-flight mass spectrometry revealed. Eur J Mass Spectrom 9(3):151–164Google Scholar
  30. 30.
    Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72(6):1156–1162PubMedGoogle Scholar
  31. 31.
    Hardman M, Makarov AA (2003) Interfacing the orbitrap mass analyzer to an electrospray ion source. Anal Chem 75(7):1699–1705PubMedGoogle Scholar
  32. 32.
    Marshall AG, Hendrickson CL (2002) Fourier transform ion cyclotron resonance detection: principles and experimental configurations. Int J Mass Spectrom 215(1–3):59–75Google Scholar
  33. 33.
    Horn DM, Ge Y, McLafferty FW (2000) Activated ion electron capture dissociation for mass spectral sequencing of larger (42 kDa) proteins. Anal Chem 72(20):4778–4784PubMedGoogle Scholar
  34. 34.
    Fenselau C (1991) Beyond gene sequencing: analysis of protein structure with mass spectrometry. Annu Rev Biophys Biophys Chem 20(1):205–220PubMedGoogle Scholar
  35. 35.
    McLafferty FW, Breuker K, Jin M, Han X, Infusini G, Jiang H, Kong X, Begley TP (2007) Top-down MS, a powerful complement to the high capabilities of proteolysis proteomics. FEBS J 274(24):6256–6268PubMedGoogle Scholar
  36. 36.
    Karabacak NM, Li L, Tiwari A, Hayward LJ, Hong PY, Easterling ML, Agar JN (2009) Sensitive and specific identification of wild type and variant proteins from 8 to 669 kDa using top-down mass spectrometry. Mol Cell Proteomics 8(4):846–856PubMedGoogle Scholar
  37. 37.
    Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:397–409Google Scholar
  38. 38.
    Mirgorodskaya E, Roepstorff P, Zubarev RA (1999) Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer. Anal Chem 71(20):4431–4436PubMedGoogle Scholar
  39. 39.
    Marino K, Bones J, Kattla JJ, Rudd PM (2010) A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol 6(10):713–723PubMedGoogle Scholar
  40. 40.
    Loo JA (1997) Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom Rev 16(1):1–23PubMedGoogle Scholar
  41. 41.
    Hernandez H, Robinson CV (2007) Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat Protoc 2(3):715–726PubMedGoogle Scholar
  42. 42.
    Yin S, Loo JA (2009) Mass spectrometry detection and characterization of noncovalent protein complexes. Methods Mol Biol 492:273–282PubMedGoogle Scholar
  43. 43.
    Heck AJR (2008) Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods 5(11):927–933PubMedGoogle Scholar
  44. 44.
    Uetrecht C, Versluis C, Watts NR, Roos WH, Wuite GJL, Wingfield PT, Steven AC, Heck AJR (2008) High-resolution mass spectrometry of viral assemblies: molecular composition and stability of dimorphic hepatitis B virus capsids. Proc Natl Acad Sci USA 105(27):9216–9220PubMedGoogle Scholar
  45. 45.
    Abzalimov RR, Frimpong AK, Kaltashov IA (2006) Gas-phase processes and measurements of macromolecular properties in solution: on the possibility of false positive and false negative signals of protein unfolding. Int J Mass Spectrom 253(3):207–216Google Scholar
  46. 46.
    Freeke J, Robinson CV, Ruotolo BT (2009) Residual counter ions can stabilise a large protein complex in the gas phase. Int J Mass Spectrom 298(1–3):91–98Google Scholar
  47. 47.
    Lei QP, Cui X, Kurtz DM Jr, Amster IJ, Chernushevich IV, Standing KG (1998) Electrospray mass spectrometry studies of non-heme iron-containing proteins. Anal Chem 70(9):1838–1846PubMedGoogle Scholar
  48. 48.
    Heck AJ, Van Den Heuvel RH (2004) Investigation of intact protein complexes by mass spectrometry. Mass Spectrom Rev 23(5):368–389PubMedGoogle Scholar
  49. 49.
    Gordiyenko Y, Robinson CV (2008) The emerging role of MS in structure elucidation of protein-nucleic acid complexes. Biochem Soc Trans 036(4):723–731Google Scholar
  50. 50.
    Leverence R, Mason AB, Kaltashov IA (2010) Noncanonical interactions between serum transferrin and transferrin receptor evaluated with electrospray ionization mass spectrometry. Proc Natl Acad Sci U S A 107(18):8123–8128PubMedGoogle Scholar
  51. 51.
    Wang G, Abzalimov RR, Kaltashov IA (2011) Direct monitoring of heat-stressed biopolymers with temperature-controlled electrospray ionization mass spectrometry. Anal Chem 83(8):2870–2876PubMedGoogle Scholar
  52. 52.
    Dobo A, Kaltashov IA (2001) Detection of multiple protein conformational ensembles in solution via deconvolution of charge state distributions in ESI MS. Anal Chem 73:4763–4773PubMedGoogle Scholar
  53. 53.
    Mohimen A, Dobo A, Hoerner JK, Kaltashov IA (2003) A chemometric approach to detection and characterization of multiple protein conformers in solution using electrospray ionization mass spectrometry. Anal Chem 75(16):4139–4147PubMedGoogle Scholar
  54. 54.
    Hendler RW, Shrager RI (1994) Deconvolutions based on singular value decomposition and the pseudoinverse: a guide for beginners. J Biochem Biophys Methods 28(1):1–33PubMedGoogle Scholar
  55. 55.
    Borysik AJH, Radford SE, Ashcroft AE (2004) Co-populated conformational ensembles of b 2-microglobulin uncovered quantitatively by electrospray ionization mass spectrometry. J Biol Chem 279(26):27069–27077PubMedGoogle Scholar
  56. 56.
    Frimpong AK, Abzalimov RR, Uversky VN, Kaltashov IA (2010) Characterization of intrinsically disordered proteins with electrospray ionization mass spectrometry: conformational heterogeneity of alpha-synuclein. Proteins 78(3):714–722PubMedGoogle Scholar
  57. 57.
    Testa L, Brocca S, Šamalikova M, Santambrogio C, Alberghina L, Grandori R (2011) Electrospray ionization-mass spectrometry conformational analysis of isolated domains of an intrinsically disordered protein. Biotechnol J 6(1):96–100PubMedGoogle Scholar
  58. 58.
    Natalello A, Benetti F, Doglia SM, Legname G, Grandori R (2011) Compact conformations of α-synuclein induced by alcohols and copper. Proteins 79(2):611–621PubMedGoogle Scholar
  59. 59.
    Brocca S, Testa L, Sobott F, Samalikova M, Natalello A, Papaleo E, Lotti M, De Gioia L, Doglia SM, Alberghina L, Grandori R (2011) Compaction properties of an intrinsically disordered protein: Sic1 and its kinase-inhibitor domain. Biophys J 100(9):2243–2252PubMedGoogle Scholar
  60. 60.
    Urey HC, Brickedde FG, Murphy GM (1932) A hydrogen isotope of mass 2. Phys Rev 39:164–165Google Scholar
  61. 61.
    Bonhoeffer KF, Klar R (1934) Uber den austausch von schweren wasserstoffatomen zwischen wasser und organischen verbindungen. Naturwissenschaften 22:45Google Scholar
  62. 62.
    Hvidt A, Linderstrom-Lang K (1954) Exchange of hydrogen atoms in insulin with deuterium atoms in aqueous solutions. Biochim Biophys Acta 14(4):574–575PubMedGoogle Scholar
  63. 63.
    Hvidt A, Linderstrom-Lang K (1955) The kinetics of deuterium exchange of insulin with D2O. An amendment. Biochim Biophys Acta 16:168–169PubMedGoogle Scholar
  64. 64.
    Burley RW, Nicholls CH, Speakman JB (1955) The crystalline/amorphous ratio of keratin fibres. Part II. The hydrogen-deuterium exchange reaction. J Text Inst 46:T427–T432Google Scholar
  65. 65.
    Katta V, Chait BT (1991) Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun Mass Spectrom 5(4):214–217PubMedGoogle Scholar
  66. 66.
    Dempsey CE (2001) Hydrogen exchange in peptides and proteins using NMR-spectroscopy. Prog Nucl Magn Reson Spectrosc 39(2):135–170Google Scholar
  67. 67.
    Hvidt A, Nielsen SO (1966) Hydrogen exchange in proteins. Adv Protein Chem 21:287–386PubMedGoogle Scholar
  68. 68.
    Maity H, Lim WK, Rumbley JN, Englander SW (2003) Protein hydrogen exchange mechanism: local fluctuations. Protein Sci 12(1):153–160PubMedGoogle Scholar
  69. 69.
    Qian H, Chan SI (1999) Hydrogen exchange kinetics of proteins in denaturants: a generalized two-process model. J Mol Biol 286(2):607–616PubMedGoogle Scholar
  70. 70.
    Eyles SJ, Kaltashov IA (2004) Methods to study protein dynamics and folding by mass spectrometry. Methods 34(1):88–99PubMedGoogle Scholar
  71. 71.
    Del Mar C, Greenbaum EA, Mayne L, Englander SW, Woods VL Jr (2005) Structure and properties of a-synuclein and other amyloids determined at the amino acid level. Proc Natl Acad Sci U S A 102(43):15477–15482PubMedGoogle Scholar
  72. 72.
    Rand KD, Zehl M, Jensen ON, Jorgensen TJD (2009) Protein hydrogen exchange measured at single-residue resolution by electron transfer dissociation mass spectrometry. Anal Chem 81(14):5577–5584PubMedGoogle Scholar
  73. 73.
    Kaltashov IA, Bobst CE, Abzalimov RR (2009) H/D exchange and mass spectrometry in the studies of protein conformation and dynamics: is there a need for a top-down approach? Anal Chem 81(19):7892–7899PubMedGoogle Scholar
  74. 74.
    Burke JE, Karbarz MJ, Deems RA, Li S, Woods VL, Dennis EA (2008) Interaction of group IA phospholipase A2 with metal ions and phospholipid vesicles probed with deuterium exchange mass spectrometry. Biochemistry 47(24):6451–6459PubMedGoogle Scholar
  75. 75.
    Xiao H, Hoerner JK, Eyles SJ, Dobo A, Voigtman E, Mel’cuk AI, Kaltashov IA (2005) Mapping protein energy landscapes with amide hydrogen exchange and mass spectrometry: I. A generalized model for a two-state protein and comparison with experiment. Protein Sci 14(2):543–557PubMedGoogle Scholar
  76. 76.
    Cheng Y, Zak O, Aisen P, Harrison SC, Walz T (2004) Structure of the human transferrin receptor-transferrin complex. Cell 116(4):565–576PubMedGoogle Scholar
  77. 77.
    Pan J, Han J, Borchers CH, Konermann L (2008) Electron capture dissociation of electrosprayed protein ions for spatially resolved hydrogen exchange measurements. J Am Chem Soc 130(35):11574–11575PubMedGoogle Scholar
  78. 78.
    Abzalimov RR, Kaplan DA, Easterling ML, Kaltashov IA (2009) Protein conformations can be probed in top-down HDX MS experiments utilizing electron transfer dissociation of protein ions without hydrogen scrambling. J Am Soc Mass Spectrom 20(8):1514–1517PubMedGoogle Scholar
  79. 79.
    Zubarev RA, Zubarev AR, Savitski MM (2008) Electron capture/transfer versus collisionally activated/induced dissociations: solo or duet? J Am Soc Mass Spectrom 19(6):753–761PubMedGoogle Scholar
  80. 80.
    Pan J, Han J, Borchers CH, Konermann L (2009) Hydrogen/deuterium exchange mass spectrometry with top-down electron capture dissociation for characterizing structural transitions of a 17 kDa protein. J Am Chem Soc 131:12801–12808PubMedGoogle Scholar
  81. 81.
    Wong SS (1991) Chemistry of protein conjugation and cross-linking. CRC, Boca Raton, FLGoogle Scholar
  82. 82.
    Han K-K, Richard C, Delacourte A (1984) Chemical cross-links of proteins by using bifunctional reagents. Int J Biochem 16(2):129–145Google Scholar
  83. 83.
    Mattson G, Conklin E, Desai S, Nielander G, Savage MD, Morgensen S (1993) A practical approach to crosslinking. Mol Biol Rep 17(3):167–183PubMedGoogle Scholar
  84. 84.
    Andrea S (2006) Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions. Mass Spectrom Rev 25(4):663–682Google Scholar
  85. 85.
    Petrotchenko EV, Borchers CH (2010) Crosslinking combined with mass spectrometry for structural proteomics. Mass Spectrom Rev 29(6):862–876PubMedGoogle Scholar
  86. 86.
    Back JW, de Jong L, Muijsers AO, de Koster CG (2003) Chemical cross-linking and mass spectrometry for protein structural modeling. J Mol Biol 331(2):303–313PubMedGoogle Scholar
  87. 87.
    Jin Lee Y (2008) Mass spectrometric analysis of cross-linking sites for the structure of proteins and protein complexes. Mol Biosyst 4(8):816–823PubMedGoogle Scholar
  88. 88.
    Yang T, Horejsh DR, Mahan KJ, Zaluzec EJ, Watson TJ, Gage DA (1996) Mapping cross-linking sites in modified proteins with mass spectrometry: an application to cross-linked hemoglobins. Anal Biochem 242(1):55–63PubMedGoogle Scholar
  89. 89.
    Bennett KL, Kussmann M, Bjork P, Godzwon M, Mikkelsen M, Sorensen P, Roepstorff P (2000) Chemical cross-linking with thiol-cleavable reagents combined with differential mass spectrometric peptide mapping—a novel approach to assess intermolecular protein contacts. Protein Sci 9(8):1503–1518PubMedGoogle Scholar
  90. 90.
    Sinz A, Wang K (2001) Mapping protein interfaces with a fluorogenic cross-linker and mass spectrometry: application to nebulin-calmodulin complexes. Biochemistry 40(26):7903–7913PubMedGoogle Scholar
  91. 91.
    Yu Z, Friso G, Miranda JJ, Patel MJ, Lo-Tseng T, Moore EG, Burlingame AL (1997) Structural characterization of human hemoglobin crosslinked by bis(3,5-dibromosalicyl) fumarate using mass spectrometric techniques. Protein Sci 6(12):2568–2577PubMedGoogle Scholar
  92. 92.
    Young MM, Tang N, Hempel JC, Oshiro CM, Taylor EW, Kuntz ID, Gibson BW, Dollinger G (2000) High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry. Proc Natl Acad Sci U S A 97(11):5802–5806PubMedGoogle Scholar
  93. 93.
    Leitner A, Walzthoeni T, Kahraman A, Herzog F, Rinner O, Beck M, Aebersold R (2010) Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. Mol Cell Proteomics 9(8):1634–1649PubMedGoogle Scholar
  94. 94.
    Rappsilber J, Siniossoglou S, Hurt EC, Mann M (2000) A generic strategy to analyze the spatial organization of multi-protein complexes by cross-linking and mass spectrometry. Anal Chem 72(2):267–275PubMedGoogle Scholar
  95. 95.
    Winters MS, Day RA (2003) Detecting protein-protein interactions in the intact cell of Bacillus subtilis (ATCC 6633). J Bacteriol 185(14):4268–4275PubMedGoogle Scholar
  96. 96.
    Du X, Chowdhury SM, Manes NP, Wu S, Mayer MU, Adkins JN, Anderson GA, Smith RD (2011) Xlink-Identifier: an automated data analysis platform for confident identifications of chemically cross-linked peptides using tandem mass spectrometry. J Proteome Res 10(3):923–931PubMedGoogle Scholar
  97. 97.
    Chu F, Baker PR, Burlingame AL, Chalkley RJ (2010) Finding chimeras: a bioinformatics strategy for identification of cross-linked peptides. Mol Cell Proteomics 9(1):25–31PubMedGoogle Scholar
  98. 98.
    Rinner O, Seebacher J, Walzthoeni T, Mueller L, Beck M, Schmidt A, Mueller M, Aebersold R (2008) Identification of cross-linked peptides from large sequence databases. Nat Methods 5(4):315–318PubMedGoogle Scholar
  99. 99.
    Gao QX, Xue S, Doneanu CE, Shaffer SA, Goodlett DR, Nelson SD (2006) Pro-CrossLink. Software tool for protein cross-linking and mass spectrometry. Anal Chem 78(7):2145–2149PubMedGoogle Scholar
  100. 100.
    Maiolica A, Cittaro D, Borsotti D, Sennels L, Ciferri C, Tarricone C, Musacchio A, Rappsilber J (2007) Structural analysis of multiprotein complexes by cross-linking, mass spectrometry, and database searching. Mol Cell Proteomics 6(12):2200–2211PubMedGoogle Scholar
  101. 101.
    Petrotchenko EV, Borchers CH (2010) ICC-CLASS: isotopically-coded cleavable crosslinking analysis software suite. BMC Bioinformatics 11:64–73PubMedGoogle Scholar
  102. 102.
    Glazer AN (1970) Specific chemical modification of proteins. Annu Rev Biochem 39(1):101–130PubMedGoogle Scholar
  103. 103.
    Hager-Braun C, Tomer KB (2002) Characterization of the tertiary structure of soluble CD4 bound to glycosylated full-length HIVgp120 by chemical modification of arginine residues and mass spectrometric analysis. Biochemistry 41(6):1759–1766PubMedGoogle Scholar
  104. 104.
    Hochleitner EO, Borchers C, Parker C, Bienstock RJ, Tomer KB (2000) Characterization of a discontinuous epitope of the human immunodeficiency virus (HIV) core protein p24 by epitope excision and differential chemical modification followed by mass spectrometric peptide mapping analysis. Protein Sci 9(3):487–496PubMedGoogle Scholar
  105. 105.
    Xu GH, Chance MR (2007) Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem Rev 107(8):3514–3543PubMedGoogle Scholar
  106. 106.
    Konermann L, Stocks BB, Pan Y, Tong X (2010) Mass spectrometry combined with oxidative labeling for exploring protein structure and folding. Mass Spectrom Rev 29(4):651–667PubMedGoogle Scholar
  107. 107.
    Roeser J, Bischoff R, Bruins AP, Permentier HP (2010) Oxidative protein labeling in mass-spectrometry-based proteomics. Anal Bioanal Chem 397(8):3441–3455PubMedGoogle Scholar
  108. 108.
    Kaur P, Kiselar JG, Chance MR (2009) Integrated algorithms for high-throughput examination of covalently labeled biomolecules by structural mass spectrometry. Anal Chem 81(19):8141–8149PubMedGoogle Scholar
  109. 109.
    Mendoza VL, Vachet RW (2009) Probing protein structure by amino acid-specific covalent labeling and mass spectrometry. Mass Spectrom Rev 28(5):785–815PubMedGoogle Scholar
  110. 110.
    Hambly D, Gross M (2005) Laser flash photolysis of hydrogen peroxide to oxidize protein solvent-accessible residues on the microsecond timescale. J Am Soc Mass Spectrom 16(12):2057–2063PubMedGoogle Scholar
  111. 111.
    Gau BC, Sharp JS, Rempel DL, Gross ML (2009) Fast photochemical oxidation of protein footprints faster than protein unfolding. Anal Chem 81(16):6563–6571PubMedGoogle Scholar
  112. 112.
    Suhnel J (2001) Beyond nucleic acid base pairs: from triads to heptads. Biopolymers 61(1):32–51PubMedGoogle Scholar
  113. 113.
    Balasubramanian S, Hurley LH, Neidle S (2011) Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov 10(4):261–275PubMedGoogle Scholar
  114. 114.
    Krishnan Y, Simmel FC (2011) Nucleic acid based molecular devices. Angew Chem Int Ed 50(14):3124–3156Google Scholar
  115. 115.
    Lightwahl KJ, Springer DL, Winger BE, Edmonds CG, Camp DG, Thrall BD, Smith RD (1993) Observation of a small oligonucleotide duplex by electrospray ionization mass-spectrometry. J Am Chem Soc 115(2):803–804Google Scholar
  116. 116.
    Goodlett DR, Camp DG, Hardin CC, Corregan M, Smith RD (1993) Direct observation of a DNA quadruplex by electrospray ionization mass spectrometry. Biol Mass Spectrom 22(3):181–183PubMedGoogle Scholar
  117. 117.
    Rosu F, Gabelica V, Poncelet H, De Pauw E (2010) Tetramolecular G-quadruplex formation pathways studied by electrospray mass spectrometry. Nucleic Acids Res 38(15):5217–5225PubMedGoogle Scholar
  118. 118.
    Rosu F, De Pauw E, Gabelica V (2008) Electrospray mass spectrometry to study drug-nucleic acids interactions. Biochimie 90(7):1074–1087PubMedGoogle Scholar
  119. 119.
    Brodbelt JS (2010) Evaluation of DNA/ligand interactions by electrospray ionization mass spectrometry. Annu Rev Anal Chem 3(1):67–87Google Scholar
  120. 120.
    Millard JT (1999) Molecular probes of DNA structure. Compr Nat Prod Chem 7:81–103Google Scholar
  121. 121.
    Smith SI, Brodbelt JS (2010) Rapid characterization of cross-links, mono-adducts, and non-covalent binding of psoralens to deoxyoligonucleotides by LC-UV/ESI-MS and IRMPD mass spectrometry. Analyst 135(5):943–952PubMedGoogle Scholar
  122. 122.
    Parr C, Pierce SE, Smith SI, Brodbelt JS (2011) Investigation of the reactivity of oligodeoxynucleotides with glyoxal and KMnO4 chemical probes by electrospray ionization mass spectrometry. Int J Mass Spectrom 304(2–3):115–123PubMedGoogle Scholar
  123. 123.
    Gmeiner WH, Sahasrabudhe P, Pon RT (1995) Use of shaped pulses for semi-selective excitation of imino H-1 resonances in duplex DNA and RNA. Magn Reson Chem 33(6):449–452Google Scholar
  124. 124.
    Nonin S, Jiang F, Patel DJ (1997) Imino proton exchange and base-pair kinetics in the AMP-RNA aptamer complex. J Mol Biol 268(2):359–374PubMedGoogle Scholar
  125. 125.
    Li TS, Johnson JE, Thomas GJ (1993) Raman dynamic probe of hydrogen-exchange in bean pod mottle virus—base-specific retardation of exchange in packaged ssRNA. Biophys J 65(5):1963–1972PubMedGoogle Scholar
  126. 126.
    Hofstadler SA, Sannes-Lowery KA, Griffey RH (2000) Enhanced gas-phase hydrogen–deuterium exchange of oligonucleotide and protein ions stored in an external multipole ion reservoir. J Mass Spectrom 35(1):62–70PubMedGoogle Scholar
  127. 127.
    Hofstadler SA, Sannes-Lowery KA, Hannis JC (2005) Analysis of nucleic acids by FTICR MS. Mass Spectrom Rev 24(2):265–285PubMedGoogle Scholar
  128. 128.
    Yu E, Fabris D (2003) Direct probing of RNA structures and RNA-protein interactions in the HIV-1 packaging signal by chemical modification and electrospray ionization Fourier transform mass spectrometry. J Mol Biol 330(2):211–223PubMedGoogle Scholar
  129. 129.
    Kellersberger KA, Yu E, Kruppa GH, Young MM, Fabris D (2004) Top-down characterization of nucleic acids modified by structural probes using high-resolution tandem mass spectrometry and automated data interpretation. Anal Chem 76(9):2438–2445PubMedGoogle Scholar
  130. 130.
    Turner KB, Yi-Brunozzi HY, Brinson RG, Marino JP, Fabris D, Le Grice SFJ (2009) SHAMS: combining chemical modification of RNA with mass spectrometry to examine polypurine tract-containing RNA/DNA hybrids. RNA 15(8):1605–1613PubMedGoogle Scholar
  131. 131.
    Fabris D, Yu ET (2010) Elucidating the higher-order structure of biopolymers by structural probing and mass spectrometry: MS3D. J Mass Spectrom 45(8):841–860PubMedGoogle Scholar
  132. 132.
    Kaltashov IA, Eyles SJ (2012) Mass spectrometry in structural biology and biophysics: architecture, dynamics, and interaction of biomolecules, 2nd edn. Wiley, Hoboken, NJGoogle Scholar
  133. 133.
    Bobst CE, Kaltashov IA (2011) Advanced mass spectrometry-based methods for the analysis of conformational integrity of biopharmaceutical products. Curr Pharm Biotechnol 12(10):1517–1529PubMedGoogle Scholar
  134. 134.
    Fabris D (2010) A role for the MS analysis of nucleic acids in the post-genomics age. J Am Soc Mass Spectrom 21(1):1–13PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Massachusetts-AmherstAmherstUSA

Personalised recommendations