Electron Paramagnetic Resonance Spectroscopy

  • John H. GolbeckEmail author
  • Art van der Est
Part of the Biophysics for the Life Sciences book series (BIOPHYS, volume 6)


Electron paramagnetic resonance (EPR) spectroscopy is widely used to study proteins that contain naturally occurring paramagnetic centers and/or artificially introduced spin labels. In this chapter we present a mainly qualitative overview of the application of EPR spectroscopy to the study biological systems. The chapter begins with a short description of the physical principles underlying the method and the basic experimental techniques. An overview of characteristic lineshapes observed under various experimental conditions is then presented to show how quantities such as hyperfine couplings, g-anisotropy and zero-field splitting manifest themselves in EPR data. A number of specific examples are used to illustrate how these quantities can be used to obtain information about the geometry, bonding, electronic structure, etc. of biological systems.


CW EPR Transient EPR Pulse EPR Zeeman splitting Spin orbit coupling Hyperfine coupling Organic radicals Metalloproteins Molecular triplet states Light-induced radical pairs 



This work was supported by the Molecular and Cellular Biosciences Division of the National Science Foundation (MCB-1021725) and by the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract DE-FG-05-05-ER46222 to JHG; and by a Discovery Grant from the Natural Science and Engineering Council Canada to AvdE.


  1. 1.
    Weil JA, Bolton JR, Wertz JE (1994) Electron paramagnetic resonance, elementary theory and practical applications. Wiley, New YorkGoogle Scholar
  2. 2.
    Atherton NM (1993) Principles of electron spin resonance. Ellis Horwood/Prentice Hall, New YorkGoogle Scholar
  3. 3.
    Hagen WR, Biomolecular EPR (2009) Spectroscopy. CRC Press, Boca Raton, FLGoogle Scholar
  4. 4.
    Brustolon M, Giamello E (eds) (2009) Electron paramagnetic resonance: a practitioner’s toolkit. Wiley, Hoboken, NJGoogle Scholar
  5. 5.
    Schweiger A, Jeschke G (2001) Principles of pulsed electron paramagnetic resonance. Oxford University Press, OxfordGoogle Scholar
  6. 6.
    Möbius K, Savitsky A (2009) High field EPR spectroscopy on proteins and their model systems: characterization of transient paramagnetic states. RSC, CambridgeGoogle Scholar
  7. 7.
    Berliner L, Reuben J (eds) (1998) Spin labeling, the next millenium. Plenum Press, New YorkGoogle Scholar
  8. 8.
    Eom HJ (2004) Electromagnetic wave theory for boundary-value problems: an advanced course on analytical methods. Springer, BerlinCrossRefGoogle Scholar
  9. 9.
    Abragam A, Bleaney B (1986) Electron paramagnetic resonance of transition metal ions. Dover, New YorkGoogle Scholar
  10. 10.
    Portis AM (1953) Electronic structure of F-centers—saturation of the electron spin resonance. Phys Rev 91(5):1071–1078CrossRefGoogle Scholar
  11. 11.
    Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638CrossRefGoogle Scholar
  12. 12.
    Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691CrossRefGoogle Scholar
  13. 13.
    Rowan LG, Hahn EL, Mims WB (1965) Electron-spin-echo envelope modulation. Phys Rev 137(1A):A61–A71CrossRefGoogle Scholar
  14. 14.
    Höfer P, Grupp A, Nebenführ H, Mehring M (1986) Hyperfine sublevel correlation (hyscore) spectroscopy—a 2D electron-spin-resonance investigation of the squaric acid radical. Chem Phys Lett 132:279–282CrossRefGoogle Scholar
  15. 15.
    Kurreck H, Kirste B, Lubitz W (1988) In: Marchand AP (ed) Electron nuclear double resonance spectroscopy of radicals in solution: application to organic and biological chemistry. Wiley, WeinheimGoogle Scholar
  16. 16.
    Hoffman BM (2003) ENDOR of metalloenzymes. Acc Chem Res 36(7):522–529PubMedCrossRefGoogle Scholar
  17. 17.
    Feher G (1956) Observation of nuclear magnetic resonances via the electron spin resonance line. Phys Rev 103(3):834–835CrossRefGoogle Scholar
  18. 18.
    Mims WB (1965) Pulsed endor experiments. Proc R Soc Lond Ser A 283(1395):452–457CrossRefGoogle Scholar
  19. 19.
    Davies ER (1974) New pulse endor technique. Phys Lett A 47(1):1–2CrossRefGoogle Scholar
  20. 20.
    Gemperle C, Schweiger A (1991) Pulsed electron nuclear double-resonance methodology. Chem Rev 91(7):1481–1505CrossRefGoogle Scholar
  21. 21.
    Larsen RG, Singel DJ (1993) Double electron–electron resonance spin-echo modulation—spectroscopic measurement of electron-spin pair separations in orientationally disordered solids. J Chem Phys 98:5134–5146CrossRefGoogle Scholar
  22. 22.
    Milov AD, Maryasov AG, Tsvetkov YD (1998) Pulsed electron double resonance (PELDOR) and its applications in free-radicals research. Appl Magn Reson 15:107–143CrossRefGoogle Scholar
  23. 23.
    Thurnauer MC, Norris JR (1980) An electron-spin echo phase-shift observed in photosynthetic algae—possible evidence for dynamic radical pair interactions. Chem Phys Lett 76(3):557–561CrossRefGoogle Scholar
  24. 24.
    Bittl R, Zech SG (2001) Pulsed EPR spectroscopy on short-lived intermediates in Photosystem I. Biochim Biophys Acta 1507:194–211PubMedCrossRefGoogle Scholar
  25. 25.
    Lendzian F, Huber M, Isaacson RA, Endeward B, Plato M, Bonigk B et al (1993) The electronic-structure of the primary donor cation-radical in rhodobacter-sphaeroides R-26—endor and triple-resonance studies in single-crystals of reaction centers. Biochim Biophys Acta 1183:139–160CrossRefGoogle Scholar
  26. 26.
    Niklas J, Gopta O, Epel B, Lubitz W, Antonkine ML (2010) Investigation of the stationary and transient A1 radical in Trp -> Phe mutants of Photosystem I. Appl Magn Reson 38:187–203PubMedCrossRefGoogle Scholar
  27. 27.
    Niklas J, Epel B, Antonkine ML, Sinnecker S, Pandelia ME, Lubitz W (2009) Electronic structure of the quinone radical anion A1 of Photosystem I investigated by advanced pulse EPR and ENDOR techniques. J Phys Chem B 113:10367–10379PubMedCrossRefGoogle Scholar
  28. 28.
    Epel B, Niklas J, Sinnecker S, Zimmermann H, Lubitz W (2006) Phylloquinone and related radical anions studied by pulse electron nuclear double resonance spectroscopy at 34 GHz and density functional theory. J Phys Chem B 110:11549–11560PubMedCrossRefGoogle Scholar
  29. 29.
    Hellmich UA, Lyubenova S, Kaltenborn E, Doshi R, van Veen HW, Prisner TF et al (2012) Probing the ATP hydrolysis cycle of the ABC multidrug transporter LmrA by pulsed EPR spectroscopy. J Am Chem Soc 134:5857–5862PubMedCrossRefGoogle Scholar
  30. 30.
    Bhatnagar J, Sircar R, Borbat PP, Freed JH, Crane BR (2012) Self-association of the histidine kinase CheA as studied by pulsed dipolar ESR spectroscopy. Biophys J 102:2192–2201PubMedCrossRefGoogle Scholar
  31. 31.
    Kandrashkin Y, van der Est A (2001) A new approach to determining the geometry of weakly coupled radical pairs from their electron spin polarization patterns. Spectrochim Acta A Mol Biomol Spectrosc 57:1697–1709PubMedCrossRefGoogle Scholar
  32. 32.
    Kandrashkin YE, van der Est A (2007) Time-resolved EPR spectroscopy of photosynthetic reaction centers: from theory to experiment. Appl Magn Reson 31:105–122CrossRefGoogle Scholar
  33. 33.
    van der Est A, Prisner T, Bittl R, Fromme P, Lubitz W, Mobius K et al (1997) Time-resolved X-, K-, and W-band EPR of the radical pair state P700+ A1 of Photosystem I in comparison with P865+ QA in bacterial reaction centers. J Phys Chem B 101(8):1437–1443CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of ChemistryBrock UniversitySt. CatharinesCanada

Personalised recommendations