Biophysical Approaches to Understanding the Action of Myosin as a Molecular Machine

  • Mihály KovácsEmail author
  • András Málnási-Csizmadia
Part of the Biophysics for the Life Sciences book series (BIOPHYS, volume 6)


Many of the concepts of biological structure–function relationships were pioneered in muscle research, resulting in mechanistic knowledge spanning from molecular actions to macroscopic phenomena. Due to its abundance and spatial organization, the actomyosin system powering muscle contraction could readily be investigated by a wide variety of biophysical methods, and also provided fertile ground for the development of these techniques. For decades, muscle actomyosin was the only known biological motor system. It was later discovered that muscle contraction represents a highly specialized form of actomyosin-based contractility. All eukaryotic cells express a variety of myosin isoforms, which drive cellular processes including cell division, differentiation, movement, intracellular transport, and exo- and endocytosis. In this chapter we discuss how various biophysical methods have been used to elucidate the structural and functional properties of the actomyosin system and the physiological processes driven by its motor activity. We provide an overview of techniques applied to study molecular and supramolecular features of diverse myosin motors including their structure, kinetics, conformational transitions, force generation, assembly, cooperation, regulation, and the linkage of these properties to cellular and physiological functions.


Myosin Actin Structure Kinetics Mechanism Muscle Energy transduction ATP ATPase Cytoskeleton Method Enzyme Activation Allostery Motility Molecular motors 



Work in MK’s lab is supported by the Human Frontier Science Program (RGY0072/2010) and the “Momentum” Program of the Hungarian Academy of Sciences (LP2011-006/2011). MK is a Bolyai Fellow of the Hungarian Academy of Sciences. Work in AMC’s lab is supported by the European Research Council (European Community’s Seventh Framework Programme (FP7/2007-2013)/European Research Council grant agreement no. 208319), the Hungarian Academy of Sciences (HAS-ELTE research group ID: 01055), the European Union in collaboration with the European Social Fund (grant agreement no. TAMOP-4.2.1/B-09/1/KMR), the National Office for Research and Technology, and the European Union (European Regional Development Fund), under the sponsorship of the National Technology Programme (NTP TECH_08_A1/2-2008-0106). We thank Kata Sarlós, Zoltán Simon, and Zhenhui Yang for figure preparation.


  1. 1.
    Bagshaw CR (1993) Muscle contraction, 2nd edn. Chapman & Hall, LondonCrossRefGoogle Scholar
  2. 2.
    Banga I, Erdos T, Gerendas M, Mommaerts WFHM, Straub FB, Szent-Gyorgyi A (1942) Studies from the Institute of Medical Chemistry, University Szeged. S. Karger, BaselGoogle Scholar
  3. 3.
    Biro NA, Szent-Gyorgyi AG (1949) The effect of actin and physico-chemical changes on the myosin ATP-ase system, and on washed muscle. Hung Acta Physiol 2:120–133PubMedGoogle Scholar
  4. 4.
    Nyitrai M, Geeves MA (2004) Adenosine diphosphate and strain sensitivity in myosin motors. Philos Trans R Soc Lond B Biol Sci 359:1867–1877PubMedCrossRefGoogle Scholar
  5. 5.
    Kovacs M, Thirumurugan K, Knight PJ, Sellers JR (2007) Load-dependent mechanism of nonmuscle myosin 2. Proc Natl Acad Sci U S A 104:9994–9999PubMedCrossRefGoogle Scholar
  6. 6.
    Sellers JR, Veigel C (2006) Walking with myosin V. Curr Opin Cell Biol 18:68–73PubMedCrossRefGoogle Scholar
  7. 7.
    Laakso JM, Lewis JH, Shuman H, Ostap EM (2008) Myosin I can act as a molecular force sensor. Science 321:133–136PubMedCrossRefGoogle Scholar
  8. 8.
    Goody RS, Hofmann-Goody W (2002) Exchange factors, effectors, GAPs and motor proteins: common thermodynamic and kinetic principles for different functions. Eur Biophys J 31:268–274PubMedCrossRefGoogle Scholar
  9. 9.
    Vale RD (1996) Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J Cell Biol 135:291–302PubMedCrossRefGoogle Scholar
  10. 10.
    Kull FJ, Vale RD, Fletterick RJ (1998) The case for a common ancestor: kinesin and myosin motor proteins and G proteins. J Muscle Res Cell Motil 19:877–886PubMedCrossRefGoogle Scholar
  11. 11.
    Weber A (1959) On the role of calcium in the activity of adenosine 5′-triphosphate hydrolysis by actomyosin. J Biol Chem 234:2764–2769PubMedGoogle Scholar
  12. 12.
    Weber A, Herz R, Reiss I (1964) The regulation of myosfibrillar activity by calcium. Proc R Soc Lond B Biol Sci 160:489–501PubMedCrossRefGoogle Scholar
  13. 13.
    Ebashi S (1980) The Croonian lecture, 1979: regulation of muscle contraction. Proc R Soc Lond B Biol Sci 207:259–286PubMedCrossRefGoogle Scholar
  14. 14.
    Huxley H, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173:973–976PubMedCrossRefGoogle Scholar
  15. 15.
    Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature 173:971–973PubMedCrossRefGoogle Scholar
  16. 16.
    Huxley HE (1953) X-ray analysis and the problem of muscle. Proc R Soc Lond B Biol Sci 141:59–62PubMedCrossRefGoogle Scholar
  17. 17.
    Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin:DNase I complex. Nature 347:37–44PubMedCrossRefGoogle Scholar
  18. 18.
    McLaughlin PJ, Gooch JT, Mannherz HG, Weeds AG (1993) Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature 364:685–692PubMedCrossRefGoogle Scholar
  19. 19.
    Schutt CE, Myslik JC, Rozycki MD, Goonesekere NC, Lindberg U (1993) The structure of crystalline profilin-beta-actin. Nature 365:810–816PubMedCrossRefGoogle Scholar
  20. 20.
    Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347:44–49PubMedCrossRefGoogle Scholar
  21. 21.
    Murakami K, Yasunaga T, Noguchi TQ, Gomibuchi Y, Ngo KX, Uyeda TQ, Wakabayashi T (2010) Structural basis for actin assembly, activation of ATP hydrolysis, and delayed phosphate release. Cell 143:275–287PubMedCrossRefGoogle Scholar
  22. 22.
    Oda T, Iwasa M, Aihara T, Maeda Y, Narita A (2009) The nature of the globular- to fibrous-actin transition. Nature 457:441–445PubMedCrossRefGoogle Scholar
  23. 23.
    Elliott A, Offer G (1978) Shape and flexibility of the myosin molecule. J Mol Biol 123:505–519PubMedCrossRefGoogle Scholar
  24. 24.
    Margossian SS, Lowey S (1973) Substructure of the myosin molecule. 3. Preparation of single-headed derivatives of myosin. J Mol Biol 74:301–311PubMedCrossRefGoogle Scholar
  25. 25.
    Margossian SS, Lowey S (1973) Substructure of the myosin molecule. IV. Interactions of myosin and its subfragments with adenosine triphosphate and F-actin. J Mol Biol 74:313–330PubMedCrossRefGoogle Scholar
  26. 26.
    Malnasi-Csizmadia A, Shimony E, Hegyi G, Szent-Gyorgyi AG, Nyitray L (1998) Dimerization of the head-rod junction of scallop myosin. Biochem Biophys Res Commun 252:595–601PubMedCrossRefGoogle Scholar
  27. 27.
    Mendelson RA, Morales MF, Botts J (1973) Segmental flexibility of the S-1 moiety of myosin. Biochemistry 12:2250–2255PubMedCrossRefGoogle Scholar
  28. 28.
    Decker B, Kellermayer MS (2008) Periodically arranged interactions within the myosin filament backbone revealed by mechanical unzipping. J Mol Biol 377:307–310PubMedCrossRefGoogle Scholar
  29. 29.
    Sellers JR (1999) Myosins. Oxford University Press, New YorkGoogle Scholar
  30. 30.
    Niederman R, Pollard TD (1975) Human platelet myosin. II. In vitro assembly and structure of myosin filaments. J Cell Biol 67:72–92PubMedCrossRefGoogle Scholar
  31. 31.
    Verkhovsky AB, Svitkina TM, Borisy GG (1995) Myosin II filament assemblies in the active lamella of fibroblasts: their morphogenesis and role in the formation of actin filament bundles. J Cell Biol 131:989–1002PubMedCrossRefGoogle Scholar
  32. 32.
    Mornet D, Pantel P, Audemard E, Kassab R (1979) The limited tryptic cleavage of chymotryptic S-1: an approach to the characterization of the actin site in myosin heads. Biochem Biophys Res Commun 89:925–932PubMedCrossRefGoogle Scholar
  33. 33.
    Mocz G, Szilagyi L, Chen LR, Fabian F, Balint M, Gergely J (1984) Effect of nucleotides, divalent cations and temperature on the tryptic susceptibility of myosin subfragment 1. Eur J Biochem 145:221–229PubMedCrossRefGoogle Scholar
  34. 34.
    Thomas DD (1987) Spectroscopic probes of muscle cross-bridge rotation. Annu Rev Physiol 49:691–709PubMedCrossRefGoogle Scholar
  35. 35.
    Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58PubMedCrossRefGoogle Scholar
  36. 36.
    Adhikari B, Hideg K, Fajer PG (1997) Independent mobility of catalytic and regulatory domains of myosin heads. Proc Natl Acad Sci U S A 94:9643–9647PubMedCrossRefGoogle Scholar
  37. 37.
    Irving M, St Claire AT, Sabido-David C, Craik JS, Brandmeier B, Kendrick-Jones J, Corrie JE, Trentham DR, Goldman YE (1995) Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle. Nature 375:688–691PubMedCrossRefGoogle Scholar
  38. 38.
    LaConte LE, Baker JE, Thomas DD (2003) Transient kinetics and mechanics of myosin’s force-generating rotation in muscle: resolution of millisecond rotational transitions in the spin-labeled myosin light-chain domain. Biochemistry 42:9797–9803PubMedCrossRefGoogle Scholar
  39. 39.
    Bauer CB, Holden HM, Thoden JB, Smith R, Rayment I (2000) X-ray structures of the apo and MgATP-bound states of Dictyostelium discoideum myosin motor domain. J Biol Chem 275:38494–38499PubMedCrossRefGoogle Scholar
  40. 40.
    Fisher AJ, Smith CA, Thoden JB, Smith R, Sutoh K, Holden HM, Rayment I (1995) X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry 34:8960–8972PubMedCrossRefGoogle Scholar
  41. 41.
    Gulick AM, Bauer CB, Thoden JB, Rayment I (1997) X-ray structures of the MgADP, MgATPgammaS, and MgAMPPNP complexes of the Dictyostelium discoideum myosin motor domain. Biochemistry 36:11619–11628PubMedCrossRefGoogle Scholar
  42. 42.
    Smith CA, Rayment I (1996) X-ray structure of the magnesium(II).ADP.vanadate complex of the dictyostelium discoideum myosin motor domain to 1.9 A resolution. Biochemistry 35:5404–5417PubMedCrossRefGoogle Scholar
  43. 43.
    Houdusse A, Szent-Gyorgyi AG, Cohen C (2000) Three conformational states of scallop myosin S1. Proc Natl Acad Sci U S A 97:11238–11243PubMedCrossRefGoogle Scholar
  44. 44.
    Houdusse A, Kalabokis VN, Himmel D, Szent-Gyorgyi AG, Cohen C (1999) Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 97:459–470PubMedCrossRefGoogle Scholar
  45. 45.
    Lymn RW, Taylor EW (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10:4617–4624PubMedCrossRefGoogle Scholar
  46. 46.
    Bagshaw CR, Eccleston JF, Eckstein F, Goody RS, Gutfreund H, Trentham DR (1974) The magnesium ion-dependent adenosine triphosphatase of myosin. Two-step processes of adenosine triphosphate association and adenosine diphosphate dissociation. Biochem J 141:351–364PubMedGoogle Scholar
  47. 47.
    Bagshaw CR, Trentham DR (1974) The characterization of myosin-product complexes and of product-release steps during the magnesium ion-dependent adenosine triphosphatase reaction. Biochem J 141:331–349PubMedGoogle Scholar
  48. 48.
    Bagshaw CR, Trentham DR, Wolcott RG, Boyer PD (1975) Oxygen exchange in the gamma-phosphoryl group of protein-bound ATP during Mg2+-dependent adenosine triphosphatase activity of myosin. Proc Natl Acad Sci U S A 72:2592–2596PubMedCrossRefGoogle Scholar
  49. 49.
    Korman VL, Anderson SE, Prochniewicz E, Titus MA, Thomas DD (2006) Structural dynamics of the actin-myosin interface by site-directed spectroscopy. J Mol Biol 356:1107–1117PubMedCrossRefGoogle Scholar
  50. 50.
    Thomas DD, Kast D, Korman VL (2009) Site-directed spectroscopic probes of actomyosin structural dynamics. Annu Rev Biophys 38:347–369PubMedCrossRefGoogle Scholar
  51. 51.
    Yengo CM, Chrin L, Rovner AS, Berger CL (1999) Intrinsic tryptophan fluorescence identifies specific conformational changes at the actomyosin interface upon actin binding and ADP release. Biochemistry 38:14515–14523PubMedCrossRefGoogle Scholar
  52. 52.
    Yengo CM, Chrin LR, Rovner AS, Berger CL (2000) Tryptophan 512 is sensitive to conformational changes in the rigid relay loop of smooth muscle myosin during the MgATPase cycle. J Biol Chem 275:25481–25487PubMedCrossRefGoogle Scholar
  53. 53.
    Malnasi-Csizmadia A, Woolley RJ, Bagshaw CR (2000) Resolution of conformational states of Dictyostelium myosin II motor domain using tryptophan (W501) mutants: implications for the open-closed transition identified by crystallography. Biochemistry 39:16135–16146PubMedCrossRefGoogle Scholar
  54. 54.
    Malnasi-Csizmadia A, Pearson DS, Kovacs M, Woolley RJ, Geeves MA, Bagshaw CR (2001) Kinetic resolution of a conformational transition and the ATP hydrolysis step using relaxation methods with a Dictyostelium myosin II mutant containing a single tryptophan residue. Biochemistry 40:12727–12737PubMedCrossRefGoogle Scholar
  55. 55.
    Malnasi-Csizmadia A, Kovacs M, Woolley RJ, Botchway SW, Bagshaw CR (2001) The dynamics of the relay loop tryptophan residue in the Dictyostelium myosin motor domain and the origin of spectroscopic signals. J Biol Chem 276:19483–19490PubMedCrossRefGoogle Scholar
  56. 56.
    Urbanke C, Wray J (2001) A fluorescence temperature-jump study of conformational transitions in myosin subfragment 1. Biochem J 358:165–173PubMedCrossRefGoogle Scholar
  57. 57.
    Gyimesi M, Kintses B, Bodor A, Perczel A, Fischer S, Bagshaw CR, Malnasi-Csizmadia A (2008) The mechanism of the reverse recovery step, phosphate release, and actin activation of Dictyostelium myosin II. J Biol Chem 283:8153–8163PubMedCrossRefGoogle Scholar
  58. 58.
    Malnasi-Csizmadia A, Kovacs M (2010) Emerging complex pathways of the actomyosin powerstroke. Trends Biochem Sci 35:684–690PubMedCrossRefGoogle Scholar
  59. 59.
    White HD, Belknap B, Webb MR (1997) Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate. Biochemistry 36:11828–11836PubMedCrossRefGoogle Scholar
  60. 60.
    Varkuti BH, Yang Z, Kintses B, Erdelyi P, Bardos-Nagy I, Kovacs AL, Hari P, Kellermayer M, Vellai T, Malnasi-Csizmadia A (2012) A novel actin binding site of myosin required for effective muscle contraction. Nat Struct Mol Biol 19:299–306PubMedCrossRefGoogle Scholar
  61. 61.
    Cooper JA, Walker SB, Pollard TD (1983) Pyrene actin: documentation of the validity of a sensitive assay for actin polymerization. J Muscle Res Cell Motil 4:253–262PubMedCrossRefGoogle Scholar
  62. 62.
    Geeves MA, Jeffries TE (1988) The effect of nucleotide upon a specific isomerization of actomyosin subfragment 1. Biochem J 256:41–46PubMedGoogle Scholar
  63. 63.
    Taylor EW (1991) Kinetic studies on the association and dissociation of myosin subfragment 1 and actin. J Biol Chem 266:294–302PubMedGoogle Scholar
  64. 64.
    Geeves MA, Holmes KC (2005) The molecular mechanism of muscle contraction. Adv Protein Chem 71:161–193PubMedCrossRefGoogle Scholar
  65. 65.
    Holmes KC, Angert I, Kull FJ, Jahn W, Schroder RR (2003) Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature 425:423–427PubMedCrossRefGoogle Scholar
  66. 66.
    Coureux PD, Wells AL, Menetrey J, Yengo CM, Morris CA, Sweeney HL, Houdusse A (2003) A structural state of the myosin V motor without bound nucleotide. Nature 425:419–423PubMedCrossRefGoogle Scholar
  67. 67.
    Holmes KC, Schroder RR, Sweeney HL, Houdusse A (2004) The structure of the rigor complex and its implications for the power stroke. Philos Trans R Soc Lond B Biol Sci 359:1819–1828PubMedCrossRefGoogle Scholar
  68. 68.
    Sweeney HL, Houdusse A (2004) The motor mechanism of myosin V: insights for muscle contraction. Philos Trans R Soc Lond B Biol Sci 359:1829–1841PubMedCrossRefGoogle Scholar
  69. 69.
    Yang Y, Gourinath S, Kovacs M, Nyitray L, Reutzel R, Himmel DM, O’Neall-Hennessey E, Reshetnikova L, Szent-Gyorgyi AG, Brown JH, Cohen C (2007) Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor. Structure 15:553–564PubMedCrossRefGoogle Scholar
  70. 70.
    Yengo CM, De La Cruz EM, Chrin LR, Gaffney DP, Berger CL (2002) Actin-induced closure of the actin-binding cleft of smooth muscle myosin. J Biol Chem 277:24114–24119PubMedCrossRefGoogle Scholar
  71. 71.
    Conibear PB, Bagshaw CR, Fajer PG, Kovacs M, Malnasi-Csizmadia A (2003) Myosin cleft movement and its coupling to actomyosin dissociation. Nat Struct Biol 10:831–835PubMedCrossRefGoogle Scholar
  72. 72.
    Klein JC, Burr AR, Svensson B, Kennedy DJ, Allingham J, Titus MA, Rayment I, Thomas DD (2008) Actin-binding cleft closure in myosin II probed by site-directed spin labeling and pulsed EPR. Proc Natl Acad Sci U S A 105:12867–12872PubMedCrossRefGoogle Scholar
  73. 73.
    Kintses B, Gyimesi M, Pearson DS, Geeves MA, Zeng W, Bagshaw CR, Malnasi-Csizmadia A (2007) Reversible movement of switch 1 loop of myosin determines actin interaction. EMBO J 26:265–274PubMedCrossRefGoogle Scholar
  74. 74.
    Holmes KC, Schroder RR (2003) Switch 1 opens on strong binding to actin. Molecular and cellular aspects of muscle contraction. Adv Exp Med Biol 538:159–166PubMedCrossRefGoogle Scholar
  75. 75.
    Yount RG, Lawson D, Rayment I (1995) Is myosin a “back door” enzyme? Biophys J 68:44S–47SPubMedGoogle Scholar
  76. 76.
    Coureux PD, Sweeney HL, Houdusse A (2004) Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO J 23:4527–4537PubMedCrossRefGoogle Scholar
  77. 77.
    Fischer S, Windshugel B, Horak D, Holmes KC, Smith JC (2005) Structural mechanism of the recovery stroke in the myosin molecular motor. Proc Natl Acad Sci U S A 102:6873–6878PubMedCrossRefGoogle Scholar
  78. 78.
    Kuhner S, Fischer S (2011) Structural mechanism of the ATP-induced dissociation of rigor myosin from actin. Proc Natl Acad Sci U S A 108:7793–7798PubMedCrossRefGoogle Scholar
  79. 79.
    Cecchini M, Houdusse A, Karplus M (2008) Allosteric communication in myosin V: from small conformational changes to large directed movements. PLoS Comput Biol 4:e1000129PubMedCrossRefGoogle Scholar
  80. 80.
    Yu H, Ma L, Yang Y, Cui Q (2007) Mechanochemical coupling in the myosin motor domain. I. Insights from equilibrium active-site simulations. PLoS Comput Biol 3:e21PubMedCrossRefGoogle Scholar
  81. 81.
    Huxley AF, Simmons RM (1971) Proposed mechanism of force generation in striated muscle. Nature 233:533–538PubMedCrossRefGoogle Scholar
  82. 82.
    Dantzig JA, Goldman YE, Millar NC, Lacktis J, Homsher E (1992) Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres. J Physiol 451:247–278PubMedGoogle Scholar
  83. 83.
    Kawai M, Halvorson HR (1991) Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned fibers of rabbit psoas muscle. Biophys J 59:329–342PubMedCrossRefGoogle Scholar
  84. 84.
    Sleep J, Irving M, Burton K (2005) The ATP hydrolysis and phosphate release steps control the time course of force development in rabbit skeletal muscle. J Physiol 563:671–687PubMedCrossRefGoogle Scholar
  85. 85.
    Caremani M, Dantzig J, Goldman YE, Lombardi V, Linari M (2008) Effect of inorganic phosphate on the force and number of myosin cross-bridges during the isometric contraction of permeabilized muscle fibers from rabbit psoas. Biophys J 95:5798–5808PubMedCrossRefGoogle Scholar
  86. 86.
    Davis JS, Epstein ND (2009) Mechanistic role of movement and strain sensitivity in muscle contraction. Proc Natl Acad Sci U S A 106:6140–6145PubMedCrossRefGoogle Scholar
  87. 87.
    Davis JS, Rodgers ME (1995) Indirect coupling of phosphate release to de novo tension generation during muscle contraction. Proc Natl Acad Sci U S A 92:10482–10486PubMedCrossRefGoogle Scholar
  88. 88.
    Fenn WO (1923) A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog. J Physiol 58:175–203PubMedGoogle Scholar
  89. 89.
    Veigel C, Schmitz S, Wang F, Sellers JR (2005) Load-dependent kinetics of myosin-V can explain its high processivity. Nat Cell Biol 7:861–869PubMedCrossRefGoogle Scholar
  90. 90.
    Veigel C, Molloy JE, Schmitz S, Kendrick-Jones J (2003) Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers. Nat Cell Biol 5:980–986PubMedCrossRefGoogle Scholar
  91. 91.
    Norstrom MF, Smithback PA, Rock RS (2010) Unconventional processive mechanics of non-muscle myosin IIB. J Biol Chem 285:26326–26334PubMedCrossRefGoogle Scholar
  92. 92.
    Linari M, Caremani M, Piperio C, Brandt P, Lombardi V (2007) Stiffness and fraction of myosin motors responsible for active force in permeabilized muscle fibers from rabbit psoas. Biophys J 92:2476–2490PubMedCrossRefGoogle Scholar
  93. 93.
    Decostre V, Bianco P, Lombardi V, Piazzesi G (2005) Effect of temperature on the working stroke of muscle myosin. Proc Natl Acad Sci U S A 102:13927–13932PubMedCrossRefGoogle Scholar
  94. 94.
    Sheetz MP, Block SM, Spudich JA (1986) Myosin movement in vitro: a quantitative assay using oriented actin cables from Nitella. Methods Enzymol 134:531–544PubMedCrossRefGoogle Scholar
  95. 95.
    Toyoshima YY, Kron SJ, McNally EM, Niebling KR, Toyoshima C, Spudich JA (1987) Myosin subfragment-1 is sufficient to move actin filaments in vitro. Nature 328:536–539PubMedCrossRefGoogle Scholar
  96. 96.
    Kron SJ, Toyoshima YY, Uyeda TQ, Spudich JA (1991) Assays for actin sliding movement over myosin-coated surfaces. Methods Enzymol 196:399–416PubMedCrossRefGoogle Scholar
  97. 97.
    Sellers JR, Cuda G, Wang F, Homsher E (1993) Myosin-specific adaptations of the motility assay. Methods Cell Biol 39:23–49PubMedCrossRefGoogle Scholar
  98. 98.
    Uyeda TQ, Abramson PD, Spudich JA (1996) The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci U S A 93:4459–4464PubMedCrossRefGoogle Scholar
  99. 99.
    Anson M, Geeves MA, Kurzawa SE, Manstein DJ (1996) Myosin motors with artificial lever arms. EMBO J 15:6069–6074PubMedGoogle Scholar
  100. 100.
    Tsiavaliaris G, Fujita-Becker S, Manstein DJ (2004) Molecular engineering of a backwards-moving myosin motor. Nature 427:558–561PubMedCrossRefGoogle Scholar
  101. 101.
    Spudich JA (1990) Optical trapping: motor molecules in motion. Nature 348:284–285PubMedCrossRefGoogle Scholar
  102. 102.
    Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368:113–119PubMedCrossRefGoogle Scholar
  103. 103.
    Molloy JE, Burns JE, Kendrick-Jones J, Tregear RT, White DC (1995) Movement and force produced by a single myosin head. Nature 378:209–212PubMedCrossRefGoogle Scholar
  104. 104.
    Saito K, Aoki T, Aoki T, Yanagida T (1994) Movement of single myosin filaments and myosin step size on an actin filament suspended in solution by a laser trap. Biophys J 66:769–777PubMedCrossRefGoogle Scholar
  105. 105.
    Steffen W, Smith D, Sleep J (2003) The working stroke upon myosin-nucleotide complexes binding to actin. Proc Natl Acad Sci U S A 100:6434–6439PubMedCrossRefGoogle Scholar
  106. 106.
    Smith D, Sleep J (2006) Strain-dependent kinetics of the myosin working stroke, and how they could be probed with optical-trap experiments. Biophys J 91:3359–3369PubMedCrossRefGoogle Scholar
  107. 107.
    Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T (1995) Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374:555–559PubMedCrossRefGoogle Scholar
  108. 108.
    Conibear PB, Kuhlman PA, Bagshaw CR (1998) Measurement of ATPase activities of myosin at the level of tracks and single molecules. Adv Exp Med Biol 453:15–26PubMedCrossRefGoogle Scholar
  109. 109.
    Sakamoto T, Wang F, Schmitz S, Xu Y, Xu Q, Molloy JE, Veigel C, Sellers JR (2003) Neck length and processivity of myosin V. J Biol Chem 278:29201–29207PubMedCrossRefGoogle Scholar
  110. 110.
    Yildiz A, Selvin PR (2005) Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc Chem Res 38:574–582PubMedCrossRefGoogle Scholar
  111. 111.
    Sakamoto T, Yildez A, Selvin PR, Sellers JR (2005) Step-size is determined by neck length in myosin V. Biochemistry 44:16203–16210PubMedCrossRefGoogle Scholar
  112. 112.
    Yang Y, Kovacs M, Sakamoto T, Zhang F, Kiehart DP, Sellers JR (2006) Dimerized Drosophila myosin VIIa: a processive motor. Proc Natl Acad Sci U S A 103:5746–5751PubMedCrossRefGoogle Scholar
  113. 113.
    Sun Y, Sato O, Ruhnow F, Arsenault ME, Ikebe M, Goldman YE (2010) Single-molecule stepping and structural dynamics of myosin X. Nat Struct Mol Biol 17:485–491PubMedCrossRefGoogle Scholar
  114. 114.
    Reifenberger JG, Toprak E, Kim H, Safer D, Sweeney HL, Selvin PR (2009) Myosin VI undergoes a 180 degrees power stroke implying an uncoupling of the front lever arm. Proc Natl Acad Sci U S A 106:18255–18260PubMedCrossRefGoogle Scholar
  115. 115.
    Houdusse A, Sweeney HL (2001) Myosin motors: missing structures and hidden springs. Curr Opin Struct Biol 11:182–194PubMedCrossRefGoogle Scholar
  116. 116.
    Pollard TD, Korn ED (1973) Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J Biol Chem 248:4682–4690PubMedGoogle Scholar
  117. 117.
    Coluccio LM (2008) Myosins: a superfamily of molecular motors. Springer, DordrechtGoogle Scholar
  118. 118.
    Odronitz F, Kollmar M (2007) Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol 8:R196PubMedCrossRefGoogle Scholar
  119. 119.
    Knight PJ, Thirumurugan K, Xu Y, Wang F, Kalverda AP, Stafford WF III, Sellers JR, Peckham M (2005) The predicted coiled-coil domain of myosin 10 forms a novel elongated domain that lengthens the head. J Biol Chem 280:34702–34708PubMedCrossRefGoogle Scholar
  120. 120.
    Peckham M (2011) Coiled coils and SAH domains in cytoskeletal molecular motors. Biochem Soc Trans 39:1142–1148PubMedCrossRefGoogle Scholar
  121. 121.
    Suveges D, Gaspari Z, Toth G, Nyitray L (2009) Charged single alpha-helix: a versatile protein structural motif. Proteins 74:905–916PubMedCrossRefGoogle Scholar
  122. 122.
    Brown JH, Cohen C (2005) Regulation of muscle contraction by tropomyosin and troponin: how structure illuminates function. Adv Protein Chem 71:121–159PubMedCrossRefGoogle Scholar
  123. 123.
    Smith RC, Cande WZ, Craig R, Tooth PJ, Scholey JM, Kendrick-Jones J (1983) Regulation of myosin filament assembly by light-chain phosphorylation. Philos Trans R Soc Lond B Biol Sci 302:73–82PubMedCrossRefGoogle Scholar
  124. 124.
    Wendt T, Taylor D, Messier T, Trybus KM, Taylor KA (1999) Visualization of head–head interactions in the inhibited state of smooth muscle myosin. J Cell Biol 147:1385–1390PubMedCrossRefGoogle Scholar
  125. 125.
    Szent-Gyorgyi AG (2007) Regulation by myosin: how calcium regulates some myosins, past and present. Adv Exp Med Biol 592:253–264PubMedCrossRefGoogle Scholar
  126. 126.
    Phichith D, Travaglia M, Yang Z, Liu X, Zong AB, Safer D, Sweeney HL (2009) Cargo binding induces dimerization of myosin VI. Proc Natl Acad Sci U S A 106:17320–17324PubMedCrossRefGoogle Scholar
  127. 127.
    Chibalina MV, Puri C, Kendrick-Jones J, Buss F (2009) Potential roles of myosin VI in cell motility. Biochem Soc Trans 37:966–970PubMedCrossRefGoogle Scholar
  128. 128.
    Wells AL, Lin AW, Chen LQ, Safer D, Cain SM, Hasson T, Carragher BO, Milligan RA, Sweeney HL (1999) Myosin VI is an actin-based motor that moves backwards. Nature 401:505–508PubMedCrossRefGoogle Scholar
  129. 129.
    Sweeney HL, Houdusse A (2010) Myosin VI rewrites the rules for myosin motors. Cell 141:573–582PubMedCrossRefGoogle Scholar
  130. 130.
    Nagy S, Ricca BL, Norstrom MF, Courson DS, Brawley CM, Smithback PA, Rock RS (2008) A myosin motor that selects bundled actin for motility. Proc Natl Acad Sci U S A 105:9616–9620PubMedCrossRefGoogle Scholar
  131. 131.
    Hodges AR, Bookwalter CS, Krementsova EB, Trybus KM (2009) A nonprocessive class V myosin drives cargo processively when a kinesin-related protein is a passenger. Curr Biol 19:2121–2125PubMedCrossRefGoogle Scholar
  132. 132.
    Kodera N, Yamamoto D, Ishikawa R, Ando T (2010) Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468:72–76PubMedCrossRefGoogle Scholar
  133. 133.
    De La Cruz EM, Ostap EM (2004) Relating biochemistry and function in the myosin superfamily. Curr Opin Cell Biol 16:61–67CrossRefGoogle Scholar
  134. 134.
    Cremo CR, Geeves MA (1998) Interaction of actin and ADP with the head domain of smooth muscle myosin: implications for strain-dependent ADP release in smooth muscle. Biochemistry 37:1969–1978PubMedCrossRefGoogle Scholar
  135. 135.
    Whittaker M, Wilson-Kubalek EM, Smith JE, Faust L, Milligan RA, Sweeney HL (1995) A 35-a movement of smooth muscle myosin on ADP release. Nature 378:748–751PubMedCrossRefGoogle Scholar
  136. 136.
    Iwamoto H, Oiwa K, Kovacs M, Sellers JR, Suzuki T, Wakayama J, Tamura T, Yagi N, Fujisawa T (2007) Diversity of structural behavior in vertebrate conventional myosins complexed with actin. J Mol Biol 369:249–264PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of BiochemistryEötvös Loránd University-Hungarian Academy of Sciences “Momentum” Motor Enzymology Research Group, Eötvös Loránd UniversityBudapestHungary
  2. 2.Department of BiochemistryEötvös Loránd University-Hungarian Academy of Sciences Molecular Biophysics Research Group, Eötvös Loránd UniversityBudapestHungary

Personalised recommendations