Advertisement

Rotary Motor ATPases

  • Stephan WilkensEmail author
Chapter
Part of the Biophysics for the Life Sciences book series (BIOPHYS, volume 6)

Abstract

The preceding chapters offered an introduction to a selection of biophysical tools most commonly used in the elucidation of the structure and mechanism of biological macromolecules. The following chapter describes how some of these tools were applied—and new ones developed—to gain an understanding of the catalytic mechanism of a particular class of membrane-bound transport proteins, the rotary motor ATPases. Rotary motor ATPases are highly efficient molecular machines that function to interconvert chemical energy (in form of ATP) into the potential energy of transmembrane ion motive force, and vice versa. Energy conversion in the rotary ATPases involves rotation of a central subdomain (the rotor) relative to a static portion called the stator. Most rotary motor ATPases can function in both directions, which means that the enzyme can either pump ions across lipid membranes at the expense of ATP hydrolysis or synthesize ATP driven by ion flow along a concentration gradient through the membrane-bound part of the complex. Catalysis involving subunit rotation was proposed before detailed structural information was available; however, proving the existence of a rotary mechanism turned out to be a biophysical challenge, and, along the way, novel single molecule observation techniques had to be developed to be able to confirm the rotary motor hypothesis. Rotary motor ATPases can be found in all domains of life including bacteria, archaea, and eukarya. The enzyme found in the inner membrane of mitochondria, the plasma membrane of bacteria, and the thylakoid membrane of chloroplasts is called F1Fo-ATP synthase or F-ATPase. The enzyme found in archaea is called A-ATP synthase (or A1Ao-ATP synthase or A-ATPase) and the enzyme found in the endomembrane system (and sometimes plasma membrane) of eukaryotic organisms is called vacuolar ATPase (or V1Vo-ATPase or V-ATPase). The family of the rotary ATPases is characterized by a similar overall topology, a cytoplasmic ATPase connected to a membrane-bound ion channel, with differences in subunit composition and structure that have evolved to accommodate different functional needs and mechanisms of enzyme regulation.

Keywords

ATPase Rotary molecular motor F-ATP synthase A-ATP synthase Vacuolar ATPase Biophysics X-ray crystallography Electron microscopy NMR spectroscopy Small angle X-ray scattering Single molecule observation Single molecule fluorescence resonance energy transfer (FRET) spectroscopy 

References

  1. 1.
    Muench SP, Trinick J, Harrison MA (2011) Structural divergence of the rotary ATPases. Q Rev Biophys 44:311–356PubMedCrossRefGoogle Scholar
  2. 2.
    Wilkens S (2005) Rotary molecular motors. Adv Protein Chem 71:345–382PubMedCrossRefGoogle Scholar
  3. 3.
    Pallen MJ, Bailey MC, Beatson SA (2006) Evolutionary links between FliH/YscL-like proteins from bacterial type III secretion systems and second-stalk components of the FoF1 and vacuolar ATPases. Protein Sci 15:935–940PubMedCrossRefGoogle Scholar
  4. 4.
    Mulkidjanian AY, Makarova KS, Galperin MY, Koonin EV (2007) Inventing the dynamo machine: the evolution of the F-type and V-type ATPases. Nat Rev Microbiol 5:892–899PubMedCrossRefGoogle Scholar
  5. 5.
    Forgac M (2007) Vacuolar ATPases: rotary pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8:917–929PubMedCrossRefGoogle Scholar
  6. 6.
    Marshansky V, Futai M (2008) The V-type H+−ATPase in vesicular trafficking: targeting, regulation, and function. Curr Opin Cell Biol 20:415–426PubMedCrossRefGoogle Scholar
  7. 7.
    Saroussi S, Nelson N (2009) The little we know on the structure and machinery of V-ATPase. J Exp Biol 212:1604–1610PubMedCrossRefGoogle Scholar
  8. 8.
    Li SC, Kane PM (2009) The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta 1793:650–663PubMedCrossRefGoogle Scholar
  9. 9.
    Margulis L (1996) Archaeal-eubacterial mergers in the origin of eukarya: phylogenetic classification of life. Proc Natl Acad Sci U S A 93:1071–1076PubMedCrossRefGoogle Scholar
  10. 10.
    Hilario E, Gogarten JP (1993) Horizontal transfer of ATPase genes—the tree of life becomes a net of life. Biosystems 31:111–119PubMedCrossRefGoogle Scholar
  11. 11.
    Müller V, Ruppert C, Lemker T (1999) Structure and function of the A1Ao-ATPases from methanogenic Archaea. J Bioenerg Biomembr 31:15–27PubMedCrossRefGoogle Scholar
  12. 12.
    Müller V, Grüber G (2003) ATP synthases: structure, function and evolution of unique energy converters. Cell Mol Life Sci 60:474–494PubMedCrossRefGoogle Scholar
  13. 13.
    Hilario E, Gogarten JP (1998) The prokaryote-to-eukaryote transition reflected in the evolution of the V/F/A-ATPase catalytic and proteolipid subunits. J Mol Evol 46:703–715PubMedCrossRefGoogle Scholar
  14. 14.
    Yokoyama K, Ohkuma S, Taguchi H, Yasunaga T, Wakabayashi T, Yoshida M (2000) V-type H+−ATPase/synthase from a thermophilic eubacterium, Thermus thermophilus. Subunit structure and operon. J Biol Chem 275:13955–13961PubMedCrossRefGoogle Scholar
  15. 15.
    Pullman ME, Penefsky HS, Datta A, Racker E (1960) Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble, dinitrophenol-stimulated adenosine triphosphatase. J Biol Chem 235:3322–3329PubMedGoogle Scholar
  16. 16.
    Kagawa Y, Racker E (1966) Partial resolution of the enzymes catalyzing oxidative phosphorylation. IX. Reconstruction of oligomycin-sensitive adenosine triphosphatase. J Biol Chem 241:2467–2474PubMedGoogle Scholar
  17. 17.
    Junge W, Engelbrecht S, Griwatz C, Groth G (1992) The chloroplast H+−ATPase: partial reactions of the proton. J Exp Biol 172:461–474PubMedGoogle Scholar
  18. 18.
    Boyer PD (1997) The ATP synthase—a splendid molecular machine. Annu Rev Biochem 66:717–749PubMedCrossRefGoogle Scholar
  19. 19.
    Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191:144–148PubMedCrossRefGoogle Scholar
  20. 20.
    Nicholls DG, Ferguson SJ (2002) Bioenergetics, 3rd edn. Academic, LondonGoogle Scholar
  21. 21.
    Nakanishi-Matsui M, Sekiya M, Nakamoto RK, Futai M (2010) The mechanism of rotating proton pumping ATPases. Biochem Biophys Acta 1797:1343–1352PubMedCrossRefGoogle Scholar
  22. 22.
    Senior AE, Nadanaciva S, Weber J (2003) The molecular mechanism of ATP synthesis by F1Fo-ATP synthase. Biochem Biophys Acta 1553:188–211Google Scholar
  23. 23.
    Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase—a marvelous rotary engine of the cell. Nat Rev Mol Cell Biol 2:669–677PubMedCrossRefGoogle Scholar
  24. 24.
    Capaldi RA, Aggeler R (2002) Mechanism of F1Fo-type ATP synthase, a biological rotary motor. Trends Biochem Sci 27:154–160PubMedCrossRefGoogle Scholar
  25. 25.
    Wilkens S (2009) Chemistry of ATP synthesis. Wiley’s Encyclopedia of chemical biology. Wiley, New YorkGoogle Scholar
  26. 26.
    Murata T, Yamato I, Kakinuma Y (2005) Structure and mechanism of vacuolar Na+−transporting ATPase from Enterococcus hirae. J Bioenerg Biomembr 37:411–413PubMedCrossRefGoogle Scholar
  27. 27.
    Furuike S, Nakano M, Adachi K, Noji H, Kinosita K Jr, Yokoyama K (2011) Resolving stepping rotation in Thermus thermophilus H(+)-ATPase/synthase with an essentially drag-free probe. Nat Commun 2:233PubMedCrossRefGoogle Scholar
  28. 28.
    Hirata T, Nakamura N, Omote H, Wada Y, Futai M (2000) Regulation and reversibility of vacuolar H+−ATPase. J Biol Chem 275:386–389PubMedCrossRefGoogle Scholar
  29. 29.
    Kane PM, Parra KJ (2000) Assembly and regulation of the yeast vacuolar H+-ATPase. J Exp Biol 203:81–87PubMedGoogle Scholar
  30. 30.
    Smardon AM, Tarsio M, Kane PM (2002) The RAVE complex is essential for stable assembly of the yeast V-ATPase. J Biol Chem 277:13831–13839PubMedCrossRefGoogle Scholar
  31. 31.
    Sumner JP, Dow JA, Earley FG, Klein U, Jäger D, Wieczorek H (1995) Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. J Biol Chem 270:5649–5653PubMedCrossRefGoogle Scholar
  32. 32.
    Trombetta ES, Ebersold M, Garrett W, Pypaert M, Mellman I (2003) Activation of lysosomal function during dendritic cell maturation. Science 299:1400–1403PubMedCrossRefGoogle Scholar
  33. 33.
    Voss M, Vitavska O, Walz B, Wieczorek H, Baumann O (2007) Stimulus-induced phosphorylation of vacuolar H+−ATPase by protein kinase A. J Biol Chem 282:33735–33742PubMedCrossRefGoogle Scholar
  34. 34.
    Blair HC, Teitelbaum SL, Ghiselli R, Gluck S (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245:855–857PubMedCrossRefGoogle Scholar
  35. 35.
    Finberg KE, Wagner CA, Bailey MA, Paunescu TG, Breton S, Brown D, Giebisch G, Geibel JP, Lifton RP (2005) The B1-subunit of the H(+) ATPase is required for maximal urinary acidification. Proc Natl Acad Sci U S A 102:13616–13621PubMedCrossRefGoogle Scholar
  36. 36.
    Alper SL (2010) Familial renal tubular acidosis. J Nephrol 23(suppl 16):S57–S76PubMedGoogle Scholar
  37. 37.
    Sun-Wada GH, Wada Y, Futai M (2003) Lysosome and lysosome-related organelles responsible for specialized functions in higher organisms, with special emphasis on vacuolar-type proton ATPase. Cell Struct Funct 28:455–463PubMedCrossRefGoogle Scholar
  38. 38.
    Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H et al (1999) Mutations in the gene encoding B1 subunit of H+−ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 21:84–90PubMedCrossRefGoogle Scholar
  39. 39.
    Martinez-Zaguilan R, Lynch RM, Martinez GM, Gillies RJ (1993) Vacuolar-type H(+)-ATPases are functionally expressed in plasma membranes of human tumor cells. Am J Physiol 265:C1015–C1029PubMedGoogle Scholar
  40. 40.
    Kartner N, Yao Y, Li K, Crasto GJ, Datti A et al (2010) Inhibition of osteoclast V-ATPase-mediated acid secretion by targeting the a3-B2 subunit interaction. J Biol Chem 285:37476–37490PubMedCrossRefGoogle Scholar
  41. 41.
    Johnson RM, Allen C, Melman SD, Waller A, Young SM et al (2010) Identification of inhibitors of vacuolar proton-translocating ATPase pumps in yeast by high-throughput screening flow cytometry. Anal Biochem 398:203–211PubMedCrossRefGoogle Scholar
  42. 42.
    Fernandez-Moran H, Oda T, Blair PV, Green DE (1964) A macromolecular repeating unit of mitochondrial structure and function. Correlated electron microscopic and biochemical studies of isolated mitochondria and submitochondrial particles of beef heart muscle. J Cell Biol 22:63–100PubMedCrossRefGoogle Scholar
  43. 43.
    Amzel LM, Pedersen PL (1978) Adenosine triphosphatase from rat liver mitochondria. Crystallization and X-ray diffraction studies of the F1-component of the enzyme. J Biol Chem 253:2067–2069PubMedGoogle Scholar
  44. 44.
    Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628PubMedCrossRefGoogle Scholar
  45. 45.
    Abrahams JP, Leslie AG (1996) Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr D Biol Crystallogr 52:30–42PubMedCrossRefGoogle Scholar
  46. 46.
    Gibbons C, Montgomery MG, Leslie AG, Walker JE (2000) The structure of the central stalk in bovine F1-ATPAse at 2.4 Å resolution. Nat Struct Biol 7:1055–1061PubMedCrossRefGoogle Scholar
  47. 47.
    Menz RI, Walker JE, Leslie AG (2001) Structure of bovine mitochondrial F1-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis. Cell 106:331–341PubMedCrossRefGoogle Scholar
  48. 48.
    Bowler MW, Montgomery MG, Leslie AG, Walker JE (2007) Ground state structure of F1-ATPase from bovine heart mitochondria at 1.9 Å resolution. J Biol Chem 282:14238–14242PubMedCrossRefGoogle Scholar
  49. 49.
    Bianchet M, Hullihen J, Pedersen PL, Amzel M (1998) The 2.8-Å structure of rat liver F1-ATPase: configuration of a critical intermediate in ATP synthesis/hydrolysis. Proc Natl Acad Sci U S A 95:11065–11070PubMedCrossRefGoogle Scholar
  50. 50.
    Groth G, Pohl E (2001) The structure of the chloroplast F1-ATPase at 3.2 Å resolution. J Biol Chem 276:1345–1352PubMedCrossRefGoogle Scholar
  51. 51.
    Kabaleeswaran V, Puri N, Walker JE, Leslie AG, Mueller DM (2006) Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1 ATPase. EMBO J 25:5433–5443PubMedCrossRefGoogle Scholar
  52. 52.
    Dautant A, Velours J, Giraud MF (2010) Crystal structure of the Mg-ADP-inhibited state of the yeast F1c10-ATP synthase. J Biol Chem 285:29502–29510PubMedCrossRefGoogle Scholar
  53. 53.
    Cingolani G, Duncan TM (2011) Structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli in an autoinhibited conformation. Nat Struct Mol Biol 18:701–707PubMedCrossRefGoogle Scholar
  54. 54.
    Maher MJ, Akimoto S, Iwata M, Nagata K, Hori Y, Yoshida M, Yokoyama S, Iwata S, Yokoyama K (2009) Crystal structure of A3B3 complex of V-ATPase from Thermus thermophilus. EMBO J 28:3771–3779PubMedCrossRefGoogle Scholar
  55. 55.
    Numoto N, Hasegawa Y, Takeda K, Miki K (2009) Inter-subunit interaction and quaternary rearrangement defined by the central stalk of prokaryotic V1-ATPase. EMBO Rep 10:1228–1234PubMedCrossRefGoogle Scholar
  56. 56.
    Stock D, Leslie AGW, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705PubMedCrossRefGoogle Scholar
  57. 57.
    Watt IN, Montgomery MG, Runswick MJ, Leslie AGW, Walker JE (2010) Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc Natl Acad Sci U S A 107:16823–16827PubMedCrossRefGoogle Scholar
  58. 58.
    Jones PC, Fillingame RH (1998) Genetic fusions of subunit c in the F0 sector of H+−transporting ATP synthase. Functional dimers and trimers and determination of stoichiometry by cross-linking analysis. J Biol Chem 273:29701–29705PubMedCrossRefGoogle Scholar
  59. 59.
    Jiang W, Hermolin J, Fillingame RH (2001) The preferred stoichiometry of c subunits in the rotary motor sector of Escherichia coli ATP synthase is 10. Proc Natl Acad Sci U S A 98:4966–4971PubMedCrossRefGoogle Scholar
  60. 60.
    Meier T, Polzer D, Diedrichs K, Welte W, Dimroth P (2005) Structure of the rotor ring of F-type Na+−ATPase from Ilyobacter tartaricus. Science 308:659–662PubMedCrossRefGoogle Scholar
  61. 61.
    Symersky J, Pagadala V, Osowski D, Krah A, Meier T, Faraldo-Gómez JD, Mueller DM (2012) Structure of the c(10) ring of the yeast mitochondrial ATP synthase in the open conformation. Nat Struct Mol Biol 19:485–491PubMedCrossRefGoogle Scholar
  62. 62.
    Vollmar M, Schlieper D, Winn M, Büchner C, Groth G (2009) Structure of the c14 rotor ring of the proton translocating chloroplast ATP synthase. J Biol Chem 284:18228–18235PubMedCrossRefGoogle Scholar
  63. 63.
    Pogoryelov D, Yildiz O, Faraldo-Gómez JD, Meier T (2009) High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat Struct Mol Biol 16:1068–1073PubMedCrossRefGoogle Scholar
  64. 64.
    Toei M, Gerle C, Nakano M, Tani K, Gyobu N, Tamakoshi M, Sone N, Yoshida M, Fujiyoshi Y, Mitsuoka K, Yokoyama K (2007) Dodecamer rotor ring defines H+/ATP ratio for ATP synthesis of prokaryotic V-ATPase from Thermus thermophilus. Proc Natl Acad Sci U S A 104:20256–20261PubMedCrossRefGoogle Scholar
  65. 65.
    Lau WC, Rubinstein JL (2012) Subnanometre-resolution structure of the intact Thermus thermophilus H+−driven ATP synthase. Nature 481:214–218CrossRefGoogle Scholar
  66. 66.
    Murata T, Yamato I, Kakinuma Y, Leslie AG, Walker JE (2005) Structure of the rotor of the V-type Na+−ATPase from Enterococcus hirae. Science 308:654–659PubMedCrossRefGoogle Scholar
  67. 67.
    Steigmiller S, Turina P, Gräber P (2008) The thermodynamic H+/ATP ratios of the H+-ATP synthases from chloroplasts and Escherichia coli. Proc Natl Acad Sci U S A 105:3745–3750PubMedCrossRefGoogle Scholar
  68. 68.
    Dunn SD, McLachlin DT, Revington M (2000) The second stalk of Escherichia coli ATP synthase. Biochim Biophys Acta 1458:356–363PubMedCrossRefGoogle Scholar
  69. 69.
    Dickson VK, Silvester JA, Fearnley IM, Leslie AG, Walker JE (2006) On the structure of the stator of the mitochondrial ATP synthase. EMBO J 25:2911–2918PubMedCrossRefGoogle Scholar
  70. 70.
    Esteban O, Bernal RA, Donohoe M, Videler H, Sharon M, Robinson CV, Stock D (2008) Stoichiometry and localization of the stator subunits E and G in Thermus thermophilus H+−ATPase/synthase. J Biol Chem 283:2595–2603PubMedCrossRefGoogle Scholar
  71. 71.
    Kitagawa N, Mazon H, Heck AJ, Wilkens S (2008) Stoichiometry of the peripheral stalk subunits E and G of yeast V1-ATPase determined by mass spectrometry. J Biol Chem 283:3329–3337PubMedCrossRefGoogle Scholar
  72. 72.
    Lee LK, Stewart AG, Donohoe M, Bernal RA, Stock D (2010) The structure of the peripheral stalk of Thermus thermophilus H+−ATPase/synthase. Nat Struct Mol Biol 17:373–378PubMedCrossRefGoogle Scholar
  73. 73.
    Stewart AG, Lee LK, Donohoe M, Chaston JJ, Stock D (2012) The dynamic stator stalk of rotary ATPases. Nat Commun 3:687PubMedCrossRefGoogle Scholar
  74. 74.
    Oot RA, Huang L-S, Berry EA, Wilkens S (2012) Crystal structure of the yeast vacuolar ATPase heterotrimeric EGChead peripheral stalk complex. Structure 20:1881–1892PubMedCrossRefGoogle Scholar
  75. 75.
    Girvin ME, Rastogi VK, Abildgaard F, Markley JL, Fillingame RH (1998) Solution structure of the transmembrane H+−transporting subunit c of the F1F0 ATP synthase. Biochemistry 37:8817–8824PubMedCrossRefGoogle Scholar
  76. 76.
    Rastogi VK, Girvin ME (1999) Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402:263–268PubMedCrossRefGoogle Scholar
  77. 77.
    Capaldi RA, Aggeler R, Wilkens S (1995) Conformational changes in the γ and ε subunits are integral to the functioning of the Escherichia coli H+-pumping ATPase (ECF1F0). Trans Biochem Soc 23:767–770Google Scholar
  78. 78.
    Wilkens S, Dahlquist F, McIntosh L, Donaldson L, Capaldi RA (1995) Structural features of the ε subunit of the Escherichia coli ATP synthase (ECF1Fo) from NMR spectroscopy. Nat Struct Biol 2:961–967PubMedCrossRefGoogle Scholar
  79. 79.
    Wilkens S, Capaldi RA (1998) Solution structure of the ε subunit of the F1-ATPase form Escherichia coli and interactions of this subunit with β subunits in the complex. J Biol Chem 273:26645–26651PubMedCrossRefGoogle Scholar
  80. 80.
    Uhlin U, Cox G, Guss JM (1997) Crystal structure of the epsilon subunit of the proton-translocating ATP synthase from Escherichia coli. Structure 15:1219–1230CrossRefGoogle Scholar
  81. 81.
    Pullman ME, Monroy GC (1963) A naturally occurring inhibitor of mitochondrial adenosine triphosphatase. J Biol Chem 238:3762–3769PubMedGoogle Scholar
  82. 82.
    Cabezón E, Montgomery MG, Leslie AG, Walker JE (2003) The structure of bovine F1-ATPase in complex with its regulatory protein IF1. Nat Struct Biol 10:744–750PubMedCrossRefGoogle Scholar
  83. 83.
    Cabezón E, Runswick MJ, Leslie AG, Walker JE (2001) The structure of bovine IF(1), the regulatory subunit of mitochondrial F-ATPase. EMBO J 20:6990–6996PubMedCrossRefGoogle Scholar
  84. 84.
    Wilkens S, Dunn SD, Chandler J, Dahlquist FW, Capaldi RA (1997) Solution structure of the N-terminal domain (residues 1–134) of the δ subunit of the Escherichia coli F1F0 ATPsynthase. Nat Struct Biol 4:198–201PubMedCrossRefGoogle Scholar
  85. 85.
    Carbajo RJ, Kellas FA, Runswick MJ, Montgomery MG, Walker JE, Neuhaus D (2005) Structure of the F1-binding domain of the stator of bovine F1Fo-ATPase and how it binds an alpha-subunit. J Mol Biol 351:824–838PubMedCrossRefGoogle Scholar
  86. 86.
    Wilkens S, Borchardt D, Weber J, Senior AE (2005) Structural characterization of the interaction of the δ and α subunits of the Escherichia coli F1F0-ATPsynthase by NMR spectroscopy. Biochemistry 44:11786–11794PubMedCrossRefGoogle Scholar
  87. 87.
    Kresge N, Simoni RD, Hill RL (2006) Unraveling the enzymology of oxidative phosphorylation: the work of Efraim Racker. J Biol Chem 281:e4Google Scholar
  88. 88.
    Gogol EP, Aggeler R, Sagermann M, Capaldi RA (1989) Cryoelectron microscopy of Escherichia coli F1 adenosinetriphosphatase decorated with monoclonal antibodies to individual subunits of the complex. Biochemistry 28:4709–4716PubMedCrossRefGoogle Scholar
  89. 89.
    Tsuprun VL, Orlova EV, Mesyanzhinova IV (1989) Structure of the ATP-synthase studied by electron microscopy and image processing. FEBS Lett 244:279–282PubMedCrossRefGoogle Scholar
  90. 90.
    Gogol EP, Lücken U, Capaldi RA (1987) The stalk connecting the F1 and F0 domains of ATP synthase visualized by electron microscopy of unstained specimens. FEBS Lett 219:274–278PubMedCrossRefGoogle Scholar
  91. 91.
    Lücken U, Gogol EP, Capaldi RA (1990) Structure of the ATP synthase complex (ECF1F0) of Escherichia coli from cryoelectron microscopy. Biochemistry 29:5339–5343PubMedCrossRefGoogle Scholar
  92. 92.
    Wilkens S, Capaldi RA (1998) ATP synthase’s second stalk comes into focus. Nature 393:29PubMedCrossRefGoogle Scholar
  93. 93.
    Karrasch S, Walker JE (1999) Novel features in the structure of bovine ATP synthase. J Mol Biol 290:379–384PubMedCrossRefGoogle Scholar
  94. 94.
    Böttcher B, Schwarz L, Gräber P (1998) Direct indication for the existence of a double stalk in CFoF1. J Mol Biol 281:757–762PubMedCrossRefGoogle Scholar
  95. 95.
    Wilkens S, Zhou J, Nakayama R, Dunn SD, Capaldi RA (2000) Localization of the δ subunit in the Escherichia coli F1F0-ATPsynthase by immuno electron microscopy: the δ subunit binds on top of the F1. J Mol Biol 295:387–391PubMedCrossRefGoogle Scholar
  96. 96.
    Boekema EJ, Ubbink-Kok T, Lolkema JS, Brisson A, Konings WN (1997) Visualization of a peripheral stalk in V-type ATPase: evidence for the stator structure essential to rotational catalysis. Proc Natl Acad Sci U S A 94:14291–14293PubMedCrossRefGoogle Scholar
  97. 97.
    Wilkens S, Vasilyeva E, Forgac M (1999) Structure of the vacuolar ATPase by electron microscopy. J Biol Chem 274:31804–31810PubMedCrossRefGoogle Scholar
  98. 98.
    Del Rizzo PA, Bi Y, Dunn SD (2006) ATP synthase b subunit dimerization domain: a right-handed coiled coil with offset helices. J Mol Biol 364:735–746PubMedCrossRefGoogle Scholar
  99. 99.
    Rubinstein JL, Walker JE, Henderson R (2005) Structure of the mitochondrial ATP synthase by cryo electron microscopy. EMBO J 22:6182–6192CrossRefGoogle Scholar
  100. 100.
    Vonck J, Pisa KY, Morgner N, Brutschy B, Muller V (2009) Three-dimensional structure of A1A0 ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus by electron microscopy. J Biol Chem 284:10110–10119PubMedCrossRefGoogle Scholar
  101. 101.
    Bernal RA, Stock D (2004) Three-dimensional structure of the intact Thermus thermophilus H+−ATPase/synthase by electron microscopy. Structure 12:1789–1798PubMedCrossRefGoogle Scholar
  102. 102.
    Wilkens S, Inoue T, Forgac M (2004) Three-dimensional structure of the vacuolar ATPase—localization of subunit H by difference imaging and chemical cross-linking. J Biol Chem 279:41942–41949PubMedCrossRefGoogle Scholar
  103. 103.
    Zhang Z, Zheng Y, Mazon H, Milgrom E, Kitagawa N, Kish-Trier E, Heck AJ, Kane PM, Wilkens S (2008) Structure of the yeast vacuolar ATPase. J Biol Chem 283:35983–35995PubMedCrossRefGoogle Scholar
  104. 104.
    Diepholz M et al (2008) A different conformation for EGC stator subcomplex in solution and in the assembled yeast V-ATPase: possible implications for regulatory disassembly. Structure 16:1789–1798PubMedCrossRefGoogle Scholar
  105. 105.
    Muench SP et al (2009) Cryo-electron microscopy of the vacuolar ATPase motor reveals its mechanical and regulatory complexity. J Mol Biol 386:989–999PubMedCrossRefGoogle Scholar
  106. 106.
    Toei M, Toei S, Forgac M (2011) Definition of membrane topology and identification of residues important for transport in subunit a of the vacuolar ATPase. J Biol Chem 286:35176–35186PubMedCrossRefGoogle Scholar
  107. 107.
    Vik SB, Antonio BJ (1994) A mechanism of proton translocation by F1F0 ATP synthases suggested by double mutants of the a subunit. J Biol Chem 269:30364–30369PubMedGoogle Scholar
  108. 108.
    Angevine CM, Herold KA, Fillingame RH (2003) Aqueous access pathways in subunit a of rotary ATP synthase extend to both sides of the membrane. Proc Natl Acad Sci U S A 100:13179–13183PubMedCrossRefGoogle Scholar
  109. 109.
    Zhou M, Morgner N, Barrera NP, Politis A, Isaacson SC, Matak-Vinković D, Murata T, Bernal RA, Stock D, Robinson CV (2011) Mass spectrometry of intact V-type ATPases reveals bound lipids and the effects of nucleotide binding. Science 334:380–385PubMedCrossRefGoogle Scholar
  110. 110.
    Paradies HH, Schmidt UD (1979) Size and molecular parameters of adenosine triphosphatase from Escherichia coli. J Biol Chem 254:5257–5263PubMedGoogle Scholar
  111. 111.
    Svergun DI, Konrad S, Huss M, Koch MH, Wieczorek H, Altendorf K, Volkov VV, Grüber G (1998) Quaternary structure of V1 and F1 ATPase: significance of structural homologies and diversities. Biochemistry 37:17659–17663PubMedCrossRefGoogle Scholar
  112. 112.
    Armbrüster A, Svergun DI, Coskun U, Juliano S, Bailer SM, Grüber G (2004) Structural analysis of the stalk subunit Vma5p of the yeast V-ATPase in solution. FEBS Lett 570:119–125PubMedCrossRefGoogle Scholar
  113. 113.
    Basak S, Gayen S, Thaker YR, Manimekalai MS, Roessle M, Hunke C, Grüber G (2011) Solution structure of subunit F (Vma7p) of the eukaryotic V(1)V(O) ATPase from Saccharomyces cerevisiae derived from SAXS and NMR spectroscopy. Biochim Biophys Acta 1808:360–368PubMedCrossRefGoogle Scholar
  114. 114.
    Oot RA, Wilkens S (2012) Subunit interactions at the V1-Vo interface in the yeast vacuolar ATPase. J Biol Chem 287:13396–13406PubMedCrossRefGoogle Scholar
  115. 115.
    Boyer PD, Cross RL, Momsen W (1973) A new concept for energy coupling in oxidative phosphorylation based on a molecular explanation of the oxygen exchange reactions. Proc Natl Acad Sci U S A 70:2837–2839PubMedCrossRefGoogle Scholar
  116. 116.
    Cross RL, Grubmeyer C, Penefsky HS (1982) Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase. Rate constants for elementary steps in catalysis at a single site. J Biol Chem 257:12092–12100PubMedGoogle Scholar
  117. 117.
    Cross RL, Grubmeyer C, Penefsky HS (1982) Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase. Rate enhancements resulting from cooperative interactions between multiple catalytic sites. J Biol Chem 257:12101–12105PubMedGoogle Scholar
  118. 118.
    Weber J, Senior AE (2001) Bi-site catalysis in F1-ATPase: does it exist? J Biol Chem 276:35422–35428PubMedCrossRefGoogle Scholar
  119. 119.
    Duncan TM, Bulygin VV, Zhou Y, Hutcheon ML, Cross RL (1995) Rotation of subunits during catalysis by Escherichia coli F1-ATPase. Proc Natl Acad Sci U S A 92:10964–10968PubMedCrossRefGoogle Scholar
  120. 120.
    Sabbert D, Engelbrecht S, Junge W (1996) Intersubunit rotation in active F-ATPase. Nature 381:623–626PubMedCrossRefGoogle Scholar
  121. 121.
    Noji H, Yasuda R, Yoshida M, Kinosita K Jr (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299–302PubMedCrossRefGoogle Scholar
  122. 122.
    Kinosita K, Yasuda R, Noji H, Adachi K (2000) A rotary molecular motor that can work at near 100% efficiency. Philos Trans R Soc Lond B Biol Sci 255:473–489Google Scholar
  123. 123.
    Yasuda R, Noji H, Yoshida M, Kinosita K Jr, Itoh H (2001) Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410:898–904PubMedCrossRefGoogle Scholar
  124. 124.
    Spetzler D, York J, Daniel D, Fromme R, Lowry D, Frasch W (2006) Microsecond time scale rotation measurements of single F1-ATPase molecules. Biochemistry 45:3117–3124PubMedCrossRefGoogle Scholar
  125. 125.
    Adachi K, Oiwa K, Nishizaka T, Furuike S, Noji H, Itoh H, Yoshida M, Kinosita K (2007) Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation. Cell 130:309–321PubMedCrossRefGoogle Scholar
  126. 126.
    Sekiya M, Nakamoto RK, Al-Shawi MK, Nakanishi-Matsui M, Futai M (2009) Temperature dependence of single molecule rotation of the Escherichia coli ATP synthase F1 sector reveals the importance of γ-β subunit interactions in the catalytic dwell. J Biol Chem 284:22401–22410PubMedCrossRefGoogle Scholar
  127. 127.
    Itoh H, Takahashi A, Adachi K, Noji H, Yasuda R, Yoshida M, Kinosita K (2004) Mechanically driven ATP synthesis by F1-ATPase. Nature 427:465–468PubMedCrossRefGoogle Scholar
  128. 128.
    Sambongi Y, Iko Y, Tanabe M, Omote H, Iwamoto-Kihara A, Ueda I, Yanagida T, Wada Y, Futai M (1999) Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science 286:1722–1724PubMedCrossRefGoogle Scholar
  129. 129.
    Nishio K, Iwamoto-Kihara A, Yamamoto A, Wada Y, Futai M (2002) Subunit rotation of ATP synthase embedded in membranes: α or β subunit rotation relative to the c subunit ring. Proc Natl Acad Sci U S A 99:13448–13452PubMedCrossRefGoogle Scholar
  130. 130.
    Uchihashi T, Iino R, Ando T, Noji H (2011) High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science 333:755–758PubMedCrossRefGoogle Scholar
  131. 131.
    Imamura H, Takeda M, Funamoto S, Shimabukuro K, Yoshida M, Yokoyama K (2005) Rotation scheme of V1-motor is different from that of F1-motor. Proc Natl Acad Sci U S A 99:17929–17933CrossRefGoogle Scholar
  132. 132.
    Hirata T, Iwamotot-Kihara A, Sun-Wada G-H, Okajima T, Wada Y, Futai M (2003) Subunit rotation of vacuolar-type proton pumping ATPase: relative rotation of the G as to the c subunit. J Biol Chem 278:23714–23719PubMedCrossRefGoogle Scholar
  133. 133.
    Diez M, Zimmermann B, Börsch M, Konig M, Schweinberger E, Steigmüller S, Reuter R, Felekyan S, Kudryavtsev V, Seidel CA, Gräber P (2004) Proton-powered subunit rotation in single membrane-bound FoF1-ATP synthase. Nat Struct Mol Biol 11:135–141PubMedCrossRefGoogle Scholar
  134. 134.
    Düser MG, Zarrabi N, Cipriano DJ, Ernst S, Glick GD, Dunn SD, Börsch M (2009) 36 Degrees step size of proton-driven c-ring rotation in FoF1-ATP synthase. EMBO J 28:2689–2696PubMedCrossRefGoogle Scholar
  135. 135.
    Ishmukhametov R, Hornung T, Spetzler D, Frasch WD (2010) Direct observation of stepped proteolipid ring rotation in E. coli FoF1-ATP synthase. EMBO J 29:3911–3923PubMedCrossRefGoogle Scholar
  136. 136.
    Wächter A, Bi Y, Dunn SD, Cain BD, Sielaff H, Wintermann F, Engelbrecht S, Junge W (2011) Two rotary motors in F-ATP synthase are elastically coupled by a flexible rotor and a stiff stator stalk. Proc Natl Acad Sci U S A 108:3924–3929PubMedCrossRefGoogle Scholar
  137. 137.
    Fillingame RH, Dmitriev OY (2002) Structural model of the transmembrane Fo rotary sector of H+-transporting ATP synthase derived by solution NMR and intersubunit cross-linking in situ. Biochim Biophys Acta 1565:232–245PubMedCrossRefGoogle Scholar
  138. 138.
    Schneider E, Altendorf K (1985) All three subunits are required for the reconstitution of an active proton channel (Fo) of Escherichia coli ATP synthase (F1Fo). EMBO J 4:515–518PubMedGoogle Scholar
  139. 139.
    Oster G, Wang H (2003) Rotary protein motors. Trends Cell Biol 13:114–121PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseUSA

Personalised recommendations