A Visit to the Physician: Diagnoses and Enabling Technologies

  • George R. Baran
  • Mohammad F. Kiani
  • Solomon Praveen Samuel


Many folks regard an appointment with a physician with fear and trepidation; after all, something is wrong, and it’s likely that by the time the appointment is made, the patient is in some discomfort. The memory of other, earlier appointments, when diagnostic tests were ordered and the results came back with an indecipherable or incomplete explanation, only contributes to the patient’s anxiety.


Magnetic Resonance Imaging Contrast Agent Sound Wave Physical Exam Magnetic Resonance Imaging System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Street, L. (2012). Introduction to biomedical engineering technology (2nd ed.). Boca Raton, FL: CRC Press.Google Scholar
  2. 2.
    Kennedy, P. (2012, July 27). Who made that home pregnancy test? The New York Times, New York.Google Scholar
  3. 3.
    Laine, C. (2002). The annual physical examination: Needless ritual or necessary routine? Annals of Internal Medicine, 136, 701–703.CrossRefGoogle Scholar
  4. 4.
    Dunnington, G., Reisner, E., Witzke, D., & Fulginiti, J. et al. (1992). Teaching and evaluation of physical examination skills on the surgical clerkship. Teaching and Learning in Medicine, 4, 110–114.CrossRefGoogle Scholar
  5. 5.
    Simel, D., Rennie, D., The American Medical Association (Eds.). (2009). The rational clinical examination: Evidence based clinical diagnosis. McGraw-Hill: New York.Google Scholar
  6. 6.
    Smith, M., Saunders, R., Stickhardt, L., & McGinnnis, M. The Institute Of Medicine, et al. (Eds.). (2012). Best care at lower cost: The path to continuously learning health care in America. The National Academies Press: Washington, DC.Google Scholar
  7. 7.
    Rosenthal, E. (2012, June 2). Let’s (Not) Get Physicals. The New York Times. The New York Times Company: New York.Google Scholar
  8. 8.
    Akobeng, A. (2007). Understanding diagnostic tests 1: Sensitivity, specificity, and predictive values. Acta Paediatrica, 96, 338–341.CrossRefGoogle Scholar
  9. 9.
    Reading, A. (2006). The biological nature of meaningful information. Biological Theory, 1, 243–249.CrossRefGoogle Scholar
  10. 10.
    Barth, F. G. (2003). 1. Sensors and sensing: A biologist’s view. Sensors and sensing in biology and engineering (p. 3). Springer, Vienna.Google Scholar
  11. 11.
    McCollough, C. H. (1997). The AAPM/RSNA physics tutorial for residents. X-ray production. Radiographics, 17, 967–984.CrossRefGoogle Scholar
  12. 12.
    Sickles, E. A. (1986). Breast calcifications: Mammographic evaluation. Radiology, 160, 289–293.Google Scholar
  13. 13.
    Faulkner, K. G. (2000). Bone matters: Are density increases necessary to reduce fracture risk? Journal of Bone and Mineral Research, 15, 183–187.CrossRefGoogle Scholar
  14. 14.
    Brown, M. H. (1962). Effect of ionizing radiation on immunity. Canadian Medical Association Journal, 87, 1183.Google Scholar
  15. 15.
    Van Tiggelen, R., & Pouders, E. (2003). Ultrasound and computed tomography: Spin-offs of the world wars. Journal Belge de Radiologie—Belgisch Tijdschrift voor Radiologi, 86, 235–241.Google Scholar
  16. 16.
    Kane, D., Grassi, W., Sturrock, R., & Balint, P.V. et al. (2004). A brief history of musculoskeletal ultrasound: ‘From Bats and ships to babies and Hips’. Rheumatology, 43, 931–933.CrossRefGoogle Scholar
  17. 17.
    Dussik, K. T. (1942). Ueber die möglichkeit, hochfrequente mechanische schwingungen als diagnostisches hilfsmittel zu verwerten. Zeitschrift für die Gesamte Neurologie und Psychiatrie, 174, 153–168.CrossRefGoogle Scholar
  18. 18.
    Licha, K. (2002). Contrast agents for optical imaging. Topics in Current Chemistry, 222, 1–30.CrossRefGoogle Scholar
  19. 19.
    Feynman, R. (1959). There’s plenty of room at the bottom.
  20. 20.
    Vartholomeos, P., Fruchard, M., Ferreira, A., & Mavroidis, C. et al. (2011). MRI-guided nanorobotic systems for therapeutic and diagnostic applications. Annual Review of Biomedical Engineering, 13, 157–184.CrossRefGoogle Scholar
  21. 21.
    Burrows, E. (1986). Pioneers and early years: History of British radiology. Alderney, UK: Colophon.Google Scholar
  22. 22.
    Horsely, V., & Clark, R. (1908). The structure and function of the cerebellum examined by a new method. Brain, 31, 45–124.CrossRefGoogle Scholar
  23. 23.
    Cleary, K., & Peters, T. (2010). Image-guided interventions: Technology review and clinical applications. Annual Review of Biomedical Engineering, 12, 119–142.CrossRefGoogle Scholar
  24. 24.
    Guo, T., Finnis, K.W., Parrent, A.G., & Peters, T.M. et al. (2006). Visualization and navigation system development and application for stereotactic deep-brain neurosurgeries. Computer Aided Surgery, 11, 231–239.Google Scholar
  25. 25.
    Jaramaz, B., DiGioia, A.M. 3rd, Blackwell, M., & Nikou, C. et al. (1998). Computer assisted measurement of cup placement in total hip replacement. Clinical Orthopedics and Related Research, 354, 70–81.Google Scholar
  26. 26.
    Coughlin, G., Samavedi, S., Palmer, K.J., & Patel, V.R. et al. (2009). Role of image-guidance systems during NOTES. Journal of Endourology, 23, 803–812.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • George R. Baran
    • 1
  • Mohammad F. Kiani
    • 2
  • Solomon Praveen Samuel
    • 3
  1. 1.College of EngineeringTemple UniversityPhiladelphiaUSA
  2. 2.Department of Mechanical EngineeringTemple UniversityPhiladelphiaUSA
  3. 3.Orthopedic Surgery Bioengineering LaboratoryAlbert Einstein Medical CenterPhiladelphiaUSA

Personalised recommendations