Multidimensional Wavelets and Generalizations

  • Syed Twareque Ali
  • Jean-Pierre Antoine
  • Jean-Pierre Gazeau
Part of the Theoretical and Mathematical Physics book series (TMP)


The continuous wavelet transform can be extended to arbitrary dimensions and this is the topic of this chapter. We begin with the general mathematical analysis, with some emphasis on the distinction between isotropic and directional wavelets. Next we particularize to 2-D, the most important case for applications in image analysis, discussing its distinctive properties and some applications. Finally we describe in some detail a number of generalizations, such as multiselective wavelets, ridgelets, curvelets and shearlets.


Convex Cone Sparse Representation Morlet Wavelet Wavelet Frame Fourier Integral Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [Ant04]
    J-P. Antoine, R. Murenzi, P. Vandergheynst, S.T. Ali, Two-Dimensional Wavelets and their Relatives (Cambridge University Press, Cambridge (UK), 2004)Google Scholar
  2. [Ant09]
    J-P. Antoine, C. Trapani, Partial Inner Product Spaces — Theory and Applications. Lecture Notes in Mathematics, vol. 1986 (Springer, Berlin, Heidelberg, 2009)Google Scholar
  3. [Bar77]
    A.O. Barut, R. Ra̧czka, Theory of Group Representations and Applications (PWN, Warszawa, 1977)Google Scholar
  4. [Ber99]
    J.C. van den Berg (ed.), Wavelets in Physics (Cambridge University Press, Cambridge, 1999)Google Scholar
  5. [Bis10]
    S. Biskri, Détection et analyse des boucles magnétiques solaires par traitement d’images. Thèse de Doctorat, UST Houari Boumediène, Alger, 2010Google Scholar
  6. [Bou93]
    K. Bouyoucef, Sur des aspects multirésolution en reconstruction d’images: Application au Télescope Spatial de Hubble. Thèse de Doctorat, Univ. P. Sabatier, Toulouse, 1993Google Scholar
  7. [Can98]
    E.J. Candès, Ridgelets: Theory and applications. Ph.D. thesis, Department of Statistics, Stanford University, 1998Google Scholar
  8. [Coh77]
    C. Cohen-Tannoudji, B. Diu, F. Laloë, Mécanique Quantique, Tome I (Hermann, Paris, 1977)Google Scholar
  9. [Com90]
    J.-M. Combes, A. Grossmann, P. Tchamitchian (eds.), Wavelets, Time-Frequency Methods and Phase Space (Proc. Marseille 1987), 2nd edn. (Springer, Berlin, 1990)Google Scholar
  10. [DeV88]
    R. De Valois, K. De Valois, Spatial Vision (Oxford University Press, New York, 1988)Google Scholar
  11. [Duv91]
    M. Duval-Destin, Analyse spatiale et spatio-temporelle de la stimulation visuelle à l’aide de la transformée en ondelettes. Thèse de Doctorat, Université d’Aix-Marseille II, 1991Google Scholar
  12. [Fea90]
    J.-C. Feauveau, Analyse multirésolution par ondelettes non orthogonales et bancs de filtres numériques. Thèse de Doctorat, Université Paris-Sud, 1990Google Scholar
  13. [Got66]
    K. Gottfried, Quantum Mechanics: Fundamentals, vol. I (Benjamin, New York and Amsterdam, 1966)Google Scholar
  14. [Grö01]
    K. Gröchenig, Foundations of Time-Frequency Analysis (Birkhäuser, Boston, 2001)MATHGoogle Scholar
  15. [Hol95]
    M. Holschneider, Wavelets, An Analysis Tool (Oxford University Press, Oxford, 1995)MATHGoogle Scholar
  16. [Jac04]
    L. Jacques. Ondelettes, repères et couronne solaire. Thèse de Doctorat, Univ. Cath. Louvain, Louvain-la-Neuve, 2004Google Scholar
  17. [Kut12]
    G. Kutyniok, D. Labate (eds.), Shearlets: Multiscale Analysis for Multivariate Data (Birkhäuser, Boston, 2012)MATHGoogle Scholar
  18. [Mar82]
    D. Marr, Vision (Freeman, San Francisco, 1982)Google Scholar
  19. [Mey91]
    Y. Meyer (ed.), Wavelets and Applications (Proc. Marseille 1989) (Masson and Springer, Paris and Berlin, 1991)Google Scholar
  20. [Mey92]
    Y. Meyer, Les Ondelettes, Algorithmes et Applications (Armand Colin, Paris, 1992); English translation Wavelets, Algorithms and Applications (SIAM, Philadelphia, 1993)Google Scholar
  21. [Mey93]
    Y. Meyer, S. Roques (eds.), Progress in Wavelet Analysis and Applications (Proc. Toulouse 1992) (Ed. Frontières, Gif-sur-Yvette 1993)Google Scholar
  22. [Mur90]
    R. Murenzi, Ondelettes multidimensionnelles et applications à l’analyse d’images. Thèse de Doctorat, Univ. Cath. Louvain, Louvain-la-Neuve, 1990Google Scholar
  23. [Pau85]
    T. Paul, Ondelettes et Mécanique Quantique. Thèse de doctorat, Univ. d’Aix-Marseille II, 1985Google Scholar
  24. [Per05]
    G. Peyré, Géométrie multi-échelles pour les images et les textures. Thèse de doctorat, Ecole Polytechnique, Palaiseau, 2005Google Scholar
  25. [Rau04]
    H. Rauhut, Time-frequency and wavelet analysis of functions with symmetry properties. Ph.D. thesis, TU Münich, 2004Google Scholar
  26. [Str64]
    R.F. Streater, A.S. Wightman, PCT, Spin and Statistics and All That (Benjamin, New York, 1964)MATHGoogle Scholar
  27. [Tor95]
    B. Torrésani, Analyse continue par ondelettes (InterÉditions/CNRS Éditions, Paris, 1995)MATHGoogle Scholar
  28. [Van98]
    P. Vandergheynst, Ondelettes directionnelles et ondelettes sur la sphère. Thèse de Doctorat, Univ. Cath. Louvain, Louvain-la-Neuve, 1998Google Scholar
  29. [Wel03]
    G.V. Welland, Beyond Wavelets (Academic, New York, 2003)MATHGoogle Scholar
  30. [Wis93]
    W. Wisnoe, Utilisation de la méthode de transformée en ondelettes 2D pour l’analyse de visualisation d’écoulements. Thèse de Doctorat ENSAE, Toulouse, 1993Google Scholar
  31. [2]
    M.D. Adams, The JPEG-2000 still image compression standard.
  32. [58]
    J-P. Antoine, R. Murenzi, Two-dimensional directional wavelets and the scale-angle representation. Signal Process. 52, 259–281 (1996)Google Scholar
  33. [59]
    J-P. Antoine, R. Murenzi, Two-dimensional continuous wavelet transform as linear phase space representation of two-dimensional signals, in Wavelet Applications IV. SPIE Proceedings, vol. 3078 (SPIE, Bellingham, WA, 1997), pp. 206–217Google Scholar
  34. [62]
    J-P. Antoine, P. Vandergheynst, Wavelets on the n-sphere and related manifolds. J. Math. Phys. 39, 3987–4008 (1998)Google Scholar
  35. [65]
    J-P. Antoine, M. Duval-Destin, R. Murenzi, B. Piette, Image analysis with 2D wavelet transform: Detection of position, orientation and visual contrast of simple objects, in Wavelets and Applications (Proc. Marseille 1989) ed. by Y. Meyer (Masson and Springer, Paris and Berlin, 1991), pp.144–159Google Scholar
  36. [66]
    J-P. Antoine, P. Carrette, R. Murenzi, B. Piette, Image analysis with 2D continuous wavelet transform. Signal Process. 31 241–272 (1993)Google Scholar
  37. [67]
    J-P. Antoine, P. Vandergheynst, K. Bouyoucef, R. Murenzi, Alternative representations of an image via the 2D wavelet transform: Application to character recognition, in Visual Information Processing IV. SPIE Proceedings, vol. 2488 (SPIE, Bellingham, WA, 1995), pp. 486–497Google Scholar
  38. [68]
    P. Antoine, B. Piraux, A. Maquet, Time profile of harmonics generated by a single atom in a strong electromagnetic field. Phys. Rev. A 51, R1750–R1753 (1995)ADSGoogle Scholar
  39. [72]
    J-P. Antoine, D. Barache, R.M. Cesar Jr., L.F. Costa, Shape characterization with the wavelet transform. Signal Process. 62 265–290 (1997)Google Scholar
  40. [73]
    J-P. Antoine, P. Antoine, B. Piraux, Wavelets in atomic physics, in Spline Functions and the Theory of Wavelets, ed. by S. Dubuc, G. Deslauriers. CRM Proceedings and Lecture Notes, vol. 18, (AMS, Providence, RI, 1999), pp.261–276Google Scholar
  41. [74]
    J-P. Antoine, P. Antoine, B. Piraux, Wavelets in atomic physics and in solid state physics, in Wavelets in Physics,  Chap. 8, ed. by J.C. van den Berg (Cambridge University Press, Cambridge, 1999)
  42. [75]
    J-P. Antoine, R. Murenzi, P. Vandergheynst, Directional wavelets revisited: Cauchy wavelets and symmetry detection in patterns. Appl. Comput. Harmon. Anal. 6, 314–345 (1999)Google Scholar
  43. [79]
    J-P. Antoine, A. Coron, J.-M. Dereppe, Water peak suppression: Time-frequency vs. time-scale approach. J. Magn. Reson. 144, 189–194 (2000)Google Scholar
  44. [90]
    F. Argoul, A. Arnéodo, J. Elezgaray, G. Grasseau, R. Murenzi, Wavelet analysis of the self-similarity of diffusion-limited aggregates and electrodeposition clusters. Phys. Rev. A 41, 5537–5560 (1990)MathSciNetADSGoogle Scholar
  45. [91]
    T.A. Arias, Multiresolution analysis of electronic structure: Semicardinal and wavelet bases. Rev. Mod. Phys. 71, 267–312 (1999)ADSGoogle Scholar
  46. [92]
    A. Arnéodo, F. Argoul, E. Bacry, J. Elezgaray, E. Freysz, G. Grasseau, J.F. Muzy, B. Pouligny, Wavelet transform of fractals, in Wavelets and Applications (Proc. Marseille 1989) ed. by Y. Meyer (Masson and Springer, Paris and Berlin, 1991), pp. 286–352Google Scholar
  47. [93]
    A. Arnéodo, E. Bacry, J.F. Muzy, The thermodynamics of fractals revisited with wavelets. Physica A 213, 232–275 (1995)ADSGoogle Scholar
  48. [95]
    A. Arnéodo, E. Bacry, P.V. Graves, J.F. Muzy, Characterizing long-range correlations in DNA sequences from wavelet analysis. Phys. Rev. Lett. 74, 3293–3296 (1996)ADSGoogle Scholar
  49. [96]
    A. Arnéodo, Y. d’Aubenton, E. Bacry, P.V. Graves, J.F. Muzy, C. Thermes, Wavelet based fractal analysis of DNA sequences. Physica D 96, 291–320 (1996)Google Scholar
  50. [104]
    D. Astruc, L. Plantié, R. Murenzi, Y. Lebret, D. Vandromme, On the use of the 3D wavelet transform for the analysis of computational fluid dynamics results, in Progress in Wavelet Analysis and Applications (Proc. Toulouse 1992), ed. by Y. Meyer, S. Roques (Ed. Frontières, Gif-sur-Yvette 1993), pp. 463–470Google Scholar
  51. [129]
    P. Bellomo, C.R. Stroud Jr., Dispersion of Klauder’s temporally stable coherent states for the hydrogen atom. J. Phys. A: Math. Gen. 31, L445–L450 (1998)MathSciNetADSMATHGoogle Scholar
  52. [147]
    A. Bertrand, Développements en base de Pisot et répartition modulo 1. C. R. Acad. Sci. Paris 285, 419–421 (1977)MathSciNetMATHGoogle Scholar
  53. [152]
    R. Bluhm, V.A. Kosteleckỳ, J.A. Porter, The evolution and revival structure of localized quantum wave packets. Am. J. Phys. 64, 944–953 (1996)ADSGoogle Scholar
  54. [164]
    A. Bouzouina, S. De Bièvre, Equipartition of the eigenfunctions of quantized ergodic maps on the torus. Commun. Math. Phys. 178, 83–105 (1996)ADSMATHGoogle Scholar
  55. [166]
    A. Briguet, S. Cavassila, D. Graveron-Demilly, Suppression of huge signals using the Cadzow enhancement procedure. The NMR Newslett. 440, 26 (1995)Google Scholar
  56. [168]
    C.M. Brislawn, On the group-theoretic structure of lifted filter banks, in Excursions in Harmonic Analysis, vol. 1, 2, ed. by T.D. Andrews, R. Balan, J.J. Benedetto, W. Czaja, K.A. Okoudjou (Birkhäuser, Boston, 2013), pp. 113–135Google Scholar
  57. [180]
    E.J. Candès, Ridgelets and the representation of mutilated Sobolev functions. SIAM J. Math. Anal. 33, 347–368 (2001)MathSciNetMATHGoogle Scholar
  58. [181]
    E.J. Candès, L. Demanet, Curvelets and Fourier integral operators. C.R. Acad. Sci. Paris, Sér. I, Math. 336, 395–398 (2003)Google Scholar
  59. [182]
    E.J. Candès, L. Demanet, The curvelet representation of wave propagators is optimally sparse. Commun. Pure Appl. Math. 58, 1472–1528 (2004)Google Scholar
  60. [183]
    E.J. Candès, L. Demanet, The curvelet representation of wave propagators is optimally sparse. Commun. Pure Appl. Math. 58, 1472–1528 (2005)MATHGoogle Scholar
  61. [184]
    E.J. Candès, D.L. Donoho, Curvelets – A surprisingly effective nonadaptive representation for objects with edges, in Curves and Surfaces, ed. by L.L. Schumaker et al. (Vanderbilt University Press, Nashville, TN, 1999)Google Scholar
  62. [185]
    E.J. Candès, D.L. Donoho, Ridgelets: A key to higher-dimensional intermittency? Phil. Trans. R. Soc. Lond. A. 357, 2495–2509 (1999)ADSMATHGoogle Scholar
  63. [186]
    E.J. Candès, D.L. Donoho, Curvelets, multiresolution representation, and scaling laws, in Wavelet Applications in Signal and Image Processing VIII ed. by A. Aldroubi, A. Laine, M. Unser. SPIE Proceedings, vol. 4119 (SPIE, Bellingham, WA, 2000), pp. 1–12Google Scholar
  64. [187]
    E.J. Candès, D.L. Donoho, Recovering edges in ill-posed inverse problems: Optimality of curvelet frames. Ann. Statist. 30, 784–842 (2002)MathSciNetMATHGoogle Scholar
  65. [188]
    E.J. Candès, D.L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities. Commun. Pure Appl. Math. 57, 219–266 (2004)MATHGoogle Scholar
  66. [189]
    E.J. Candès, D.L. Donoho, Continuous curvelet transform. I. Resolution of the wavefront set II: Discretization and frames. Appl. Comput. Harmon. Anal. 19, 162–197, 198–222 (2005)MATHGoogle Scholar
  67. [190]
    E.J. Candès, F. Guo, New multiscale transforms, minimum total variationsynthesis: Applications to edge-preserving image reconstruction. Signal Proc. 82, 1519–1543 (2002)MATHGoogle Scholar
  68. [191]
    E.J. Candès, L. Demanet, D. Donoho, L. Ying, Fast discrete curvelet transforms. Multiscale Model. Simul. 5, 861–899 (2006)MathSciNetMATHGoogle Scholar
  69. [192]
    A.L. Carey, Square integrable representations of non-unimodular groups. Bull. Austr. Math. Soc. 15, 1–12 (1976)MathSciNetADSMATHGoogle Scholar
  70. [202]
    S.-J. Chang, K-J. Shi, Evolution and exact eigenstates of a resonant quantum system. Phys. Rev. A 34, 7–22 (1986)Google Scholar
  71. [204]
    S.L. Chown, Antarctic marine biodiversity and deep-sea hydrothermal vents. PLoS Biol. 10, 1–4 (2012)Google Scholar
  72. [207]
    L. Cohen, General phase-space distribution functions. J. Math. Phys. 7, 781–786 (1966)ADSGoogle Scholar
  73. [218]
    S. Dahlke, W. Dahmen, E. Schmidt, I. Weinreich, Multiresolution analysis and wavelets on \({\mathbb{S}}^{2}\) and \({\mathbb{S}}^{3}\). Numer. Funct. Anal. Optim. 16, 19–41 (1995)MathSciNetMATHGoogle Scholar
  74. [221]
    S. Dahlke, G. Kutyniok, G. Steidl, G. Teschke, Shearlet coorbit spaces and associated Banach frames. Appl. Comput. Harmon. Anal. 27, 195–214 (2009)MathSciNetMATHGoogle Scholar
  75. [222]
    S. Dahlke, G. Steidl, G. Teschke, The continuous shearlet transform in arbitrary space dimensions. J. Fourier Anal. Appl. 16, 340–364 (2010)MathSciNetMATHGoogle Scholar
  76. [223]
    S. Dahlke, G. Steidl, G. Teschke, Shearlet coorbit spaces: Compactly supported analyzing shearlets, traces and embeddings. J. Fourier Anal. Appl. 17, 1232–1355 (2011)MathSciNetMATHGoogle Scholar
  77. [224]
    T. Dallard, G.R. Spedding, 2-D wavelet transforms: Generalisation of the Hardy space and application to experimental studies. Eur. J. Mech. B/Fluids 12, 107–134 (1993)MathSciNetMATHGoogle Scholar
  78. [225]
    C. Daskaloyannis, Generalized deformed oscillator and nonlinear algebras. J. Phys. A: Math. Gen. 24, L789–L794 (1991)MathSciNetADSMATHGoogle Scholar
  79. [232]
    I. Daubechies, S. Maes, A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models, in Wavelets in Medicine and Biology, ed. by A. Aldroubi, M. Unser (CRC Press, Boca Raton, 1996), pp. 527–546Google Scholar
  80. [235]
    R. De Beer, D. van Ormondt, F.T.A.W. Wajer, S. Cavassila, D. Graveron-Demilly, S. Van Huffel, SVD-based modelling of medical NMR signals, in SVD and Signal Processing, III: Algorithms, Architectures and Applications, ed. by M. Moonen, B. De Moor (Elsevier (North-Holland), Amsterdam, 1995), pp. 467–474Google Scholar
  81. [247]
    N. Delprat, B. Escudié, P. Guillemain, R. Kronland-Martinet, P. Tchamitchian, B. Torrésani, Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies. IEEE Trans. Inform. Theory 38, 644–664 (1992)MathSciNetMATHGoogle Scholar
  82. [248]
    Th. Deutsch, L. Genovese, Wavelets for electronic structure calculations. Collection Soc. Fr. Neut., 12, 33–76 (2011)Google Scholar
  83. [249]
    B. Dewitt, Quantum theory of gravity I: The canonical theory. Phys. Rev. 160, 1113–1148 (1967)ADSMATHGoogle Scholar
  84. [254]
    M.N. Do, M. Vetterli, The contourlet transform: An efficient directional multiresolution image representation. IEEE Trans. Image Process. 14, 2091–2106 (2005)MathSciNetADSGoogle Scholar
  85. [255]
    V.V. Dodonov, Nonclassical states in quantum optics: A “squeezed” review of the first 75 years. J. Opt. B: Quant. Semiclass. Opot. 4, R1–R33 (2002)MathSciNetADSGoogle Scholar
  86. [257]
    D.L. Donoho, Wedgelets: Nearly minimax estimation of edges. Ann. Stat. 27, 859–897 (1999)MathSciNetMATHGoogle Scholar
  87. [258]
    D.L. Donoho, X. Huo, Beamlet pyramids: A new form of multiresolution analysis, suited for extracting lines, curves, and objects from very noisy image data, in SPIE Proceedings, vol. 5914 (SPIE, Bellingham, WA, 2005), pp. 1–12Google Scholar
  88. [259]
    A.H. Dooley, Contractions of Lie groups and applications to analysis, in Topics in Modern Harmonic Analysis, vol. I (Istituto Nazionale di Alta Matematica Francesco Severi, Roma, 1983), pp. 483–515Google Scholar
  89. [268]
    S.J.L. van Eindhoven, J.L.H. Meyers, New orthogonality relations for the Hermite polynomials and related Hilbert spaces. J. Math. Anal. Appl. 146, 89–98 (1990)MathSciNetGoogle Scholar
  90. [272]
    M. Fanuel, S. Zonetti, Affine quantization and the initial cosmological singularity. Europhys. Lett. 101, 10001 (2013)ADSGoogle Scholar
  91. [274]
    M. Farge, N. Kevlahan, V. Perrier, E. Goirand, Wavelets and turbulence. Proc. IEEE 84, 639–669 (1996)Google Scholar
  92. [276]
    H.G. Feichtinger, Coherent frames and irregular sampling, in Recent Advances in Fourier Analysis and Its applications, ed. by J.S. Byrnes, J.L. Byrnes (Kluwer, Dordrecht, 1990), pp. 427–440Google Scholar
  93. [278]
    H.G. Feichtinger, K.H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions II. Mh. Math. 108, 129–148 (1989)MATHGoogle Scholar
  94. [279]
    M. Flensted-Jensen, Discrete series for semisimple symmetric spaces. Ann. of Math. 111, 253–311 (1980)MathSciNetMATHGoogle Scholar
  95. [287]
    W.T. Freeman, E.H. Adelson, The design and use of steerable filters. IEEE Trans. Pattern Anal. Machine Intell. 13, 891–906 (1991)Google Scholar
  96. [290]
    L. Freidel, S. Speziale, Twisted geometries: A geometric parameterisation of SU(2) phase space. Phys. Rev. D 82, 084040 (2010)ADSGoogle Scholar
  97. [294]
    J-P. Gabardo, D. Han, Frames associated with measurable spaces. Adv. Comput. Math. 18, 127–147 (2003)Google Scholar
  98. [319]
    J-P. Gazeau, M. Andrle, Č. Burdík, R. Krejcar, Wavelet multiresolutions for the Fibonacci chain. J. Phys. A: Math. Gen. 33, L47–L51 (2000)Google Scholar
  99. [326]
    G. Gentili, C. Stoppato, Power series and analyticity over the quaternions. Math. Ann. 352, 113–131 (2012)MathSciNetMATHGoogle Scholar
  100. [337]
    J.A. Gonzalez, M.A. del Olmo, Coherent states on the circle. J. Phys. A: Math. Gen. 31, 8841–8857 (1998)ADSMATHGoogle Scholar
  101. [339]
    K.M. Gòrski, E. Hivon, A.J. Banday, B.D. Wandelt, F.K. Hansen, M. Reinecke, M. Bartelmann, HEALPix: A framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J. 622, 759–771 (2005)ADSGoogle Scholar
  102. [345]
    P. Grohs, G. Kutyniok, Parabolic molecules, preprint TU Berlin (2012)Google Scholar
  103. [346]
    M. Grosser, A note on distribution spaces on manifolds. Novi Sad J. Math. 38, 121–128 (2008)MathSciNetMATHGoogle Scholar
  104. [349]
    A. Grossmann, J. Morlet, Decomposition of functions into wavelets of constant shape, and related transforms, in Mathematics + Physics, Lectures on recent results. I, ed. by L. Streit (World Scientific, Singapore, 1985), pp. 135–166Google Scholar
  105. [356]
    K. Guo, G. Kutyniok, D. Labate, Sparse multidimensional representations using anisotropic dilation and shear operators, in Wavelets and Spines (Athens, GA, 2005) (Nashboro Press, Nashville, TN, 2006), pp. 189–201Google Scholar
  106. [357]
    K. Guo, D. Labate, W.-Q. Lim, G. Weiss, E. Wilson, Wavelets with composite dilations and their MRA properties. Appl. Comput. Harmon. Anal. 20, 202–236 (2006)MathSciNetMATHGoogle Scholar
  107. [358]
    E.A. Gutkin, Overcomplete subspace systems and operator symbols. Funct. Anal. Appl. 9, 260–261 (1975)MathSciNetGoogle Scholar
  108. [375]
    M. Holschneider, Wavelet analysis on the circle. J. Math. Phys. 31, 39–44 (1990)MathSciNetADSMATHGoogle Scholar
  109. [377]
    M. Holschneider, Localization properties of wavelet transforms. J. Math. Phys. 34, 3227–3244 (1993)MathSciNetADSMATHGoogle Scholar
  110. [388]
    W.-L. Hwang, C.-S. Lu, P.-C. Chung, Shape from texture: Estimation of planar surface orientation through the ridge surfaces of continuous wavelet transform. IEEE Trans. Image Proc. 7, 773–780 (1998)ADSGoogle Scholar
  111. [389]
    I. Iglewska-Nowak, M. Holschneider, Frames of Poisson wavelets on the sphere. Appl. Comput. Harmon. Anal. 28, 227–248 (2010)MathSciNetMATHGoogle Scholar
  112. [394]
    L. Jacques, L. Duval, C. Chaux, G. Peyré, A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity. Signal Proc. 91, 2699–2730 (2011)Google Scholar
  113. [395]
    H.R. Jalali, M. K. Tavassoly, On the ladder operators and nonclassicality of generalized coherent state associated with a particle in an infinite square well, preprint (2013). arXiv:1303.4100v1 [quant-ph]Google Scholar
  114. [406]
    P. Kittipoom, G. Kutyniok, W.-Q. Lim, Construction of compactly supported shearlet frames, Constr. Approx. 35, 21–72 (2012)MathSciNetMATHGoogle Scholar
  115. [407]
    J. Kiukas, P. Lahti, K. Ylinenc, Phase space quantization and the operator moment problem. J. Math. Phys. 47, 072104 (2006)MathSciNetADSGoogle Scholar
  116. [411]
    J.R. Klauder, Are coherent states the natural language of quantum mechanics?, in Fundamental Aspects of Quantum Theory, ed. by V. Gorini, A. Frigerio. NATO ASI Series, vol. B 144 (Plenum Press, New York, 1986), pp. 1–12Google Scholar
  117. [431]
    G. Kutyniok, W.-Q. Lim, Compactly supported shearlets are optimally sparse. J. Approx. Theory 163, 1564–1589 (2011)MathSciNetMATHGoogle Scholar
  118. [432]
    D. Labate, W.-Q. Lim, G. Kutyniok, G. Weiss, Sparse multidimensional representation using shearlets, in Wavelets XI (San Diego, CA, 2005), ed. by M. Papadakis, A. Laine, M. Unser. SPIE Proceedings, vol. 5914 (SPIE, Bellingham, WA, 2005), pp. 254–262Google Scholar
  119. [433]
    P. Lahti, J-P. Pellonpää, Continuous variable tomographic measurements. Phys. Lett. A 373, 3435–3438 (2009)Google Scholar
  120. [439]
    P.G. Lemarié, Y. Meyer, Ondelettes et bases hilbertiennes. Rev. Math. Iberoamer. 2, 1–18 (1986)Google Scholar
  121. [448]
    H. Liu, L. Peng, Admissible wavelets associated with the Heisenberg group. Pacific J. Math. 180, 101–123 (1997)MathSciNetGoogle Scholar
  122. [456]
    S.G. Mallat, A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Machine Intell. 11, 674–693 (1989)ADSMATHGoogle Scholar
  123. [457]
    S. Mallat, W.-L. Hwang, Singularity detection and processing with wavelets. IEEE Trans. Inform. Theory 38, 617–643 (1992)MathSciNetMATHGoogle Scholar
  124. [458]
    S. Mallat, Z. Zhang, Matching pursuits with time frequency dictionaries. IEEE Trans. Signal Proc. 41, 3397–3415 (1993)ADSMATHGoogle Scholar
  125. [460]
    V.I. Man’ko, G. Marmo, E.C.G. Sudarshan, F. Zaccaria, f-oscillators and non-linear coherent states. Phys. Scr. 55, 528–541 (1997)Google Scholar
  126. [476]
    M.A. Muschietti, B. Torrésani, Pyramidal algorithms for Littlewood–Paley decompositions. SIAM J. Math. Anal. 26, 925–943 (1995)MathSciNetMATHGoogle Scholar
  127. [500]
    A.M. Perelomov, On the completeness of a system of coherent states. Theor. Math. Phys. 6, 156–164 (1971)MathSciNetGoogle Scholar
  128. [508]
    G. Pöschl, E. Teller, Bemerkungen zur Quantenmechanik des anharmonischen Oszillators. Z. Physik 83, 143–151 (1933)ADSGoogle Scholar
  129. [517]
    H. Rauhut, M. Rösler, Radial multiresolution in dimension three. Constr. Approx. 22, 193–218 (2005)MathSciNetMATHGoogle Scholar
  130. [524]
    S. Roques, F. Bourzeix, K. Bouyoucef, Soft-thresholding technique and restoration of 3C273 jet. Astrophys. Space Sci. Nr. 239, 297–304 (1996)Google Scholar
  131. [530]
    D. Roşca, Piecewise constant wavelets on triangulations, obtained by 1–3 splitting. Int. J. Wavelets Multiresolut. Inf. Process. 6, 209–222 (2008)MathSciNetMATHGoogle Scholar
  132. [550]
    G. Saracco, A. Grossmann, P. Tchamitchian, Use of wavelet transforms in the study of propagation of transient acoustic signals across a plane interface between two homogeneous media, in Wavelets, Time-Frequency Methods and Phase Space (Proc. Marseille 1987), ed. by J.-M. Combes, A. Grossmann, P. Tchamitchian, 2nd edn. (Springer, Berlin, 1990), pp. 139–146Google Scholar
  133. [559]
    E. Slezak, A. Bijaoui, G. Mars, Identification of structures from galaxy counts. Use of the wavelet transform. Astron. Astroph. 227, 301–316 (1990)ADSGoogle Scholar
  134. [566]
    J.-L. Starck, E.J. Candès, D.L. Donoho, The curvelet transform for image denoising. IEEE Trans. Image Proc. 11, 670–684 (2002)ADSGoogle Scholar
  135. [567]
    J.-L. Starck, D.L. Donoho, E. J. Candès, Astronomical image representation by the curvelet transform. Astron. Astroph. 398, 785–800 (2003)ADSGoogle Scholar
  136. [578]
    R. Terrier, L. Demanet, I.A. Grenier, J-P. Antoine, Wavelet analysis of EGRET data, in Proceedings of the 27th International Cosmic Ray Conference (ICRC 2001) (Copernicus Gesellschaft, DE 2001), pp. 2923–2926Google Scholar
  137. [591]
    M. Unser, N. Chenouard, A unifying parametric framework for 2D steerable wavelet transforms. SIAM J. Imaging Sci. 6, 102–135 (2013)MathSciNetGoogle Scholar
  138. [592]
    P. Vandergheynst, J.-F. Gobbers, Directional dyadic wavelet transforms: Design and algorithms. IEEE Trans. Image Proc. 11, 363–372 (2002)MathSciNetADSGoogle Scholar
  139. [604]
    Y. Wiaux, L. Jacques, P. Vielva, P. Vandergheynst, Fast directional correlation on the sphere with steerable filters. Astrophys. J. 652, 820–832 (2006)ADSGoogle Scholar
  140. [608]
    R.M. Willette, R.D. Nowak, Platelets: A multiscale approach for recovering edges and surfaces in photon-limited medical imaging. IEEE Trans. Med. Imaging 22, 332–350 (2003)Google Scholar
  141. [609]
    W. Wisnoe, P. Gajan, A. Strzelecki, C. Lempereur, J.-M. Mathé, The use of the two-dimensional wavelet transform in flow visualization processing, in Progress in Wavelet Analysis and Applications (Proc. Toulouse 1992), ed. by Y. Meyer, S. Roques (Ed. Frontières, Gif-sur-Yvette 1993), pp. 455–458Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Syed Twareque Ali
    • 1
  • Jean-Pierre Antoine
    • 2
  • Jean-Pierre Gazeau
    • 3
    • 4
  1. 1.Department of Mathematics and StatisticsConcordia UniversityMontréalCanada
  2. 2.Institut de Recherche en Mathématique et Physique (IRMP)Université Catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Astroparticules et Cosmologie (APC, UMR 7164)Université Paris DiderotSorbonne Paris Cité ParisFrance
  4. 4.Centro Brasileiro de Pesquisas Fisicas (CBPF)Rio de JaneiroBrasil

Personalised recommendations