Hilbert Spaces

  • John P. D’Angelo
Part of the Cornerstones book series (COR)


The second chapter discusses linear operators on Hilbert spaces, with applications to Fourier series and special functions.




  1. [A]
    Ahlfors, Lars V., Complex Analysis: an introduction to the theory of analytic functions of one complex variable, Third edition, International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978.Google Scholar
  2. [B]
    Borwein, J. M., Hilbert’s inequality and Witten’s zeta-function, Amer. Math. Monthly 115 (2008), no. 2, 125137.Google Scholar
  3. [BER]
    Baouendi, M. Salah, Ebenfelt, Peter, and Rothschild, Linda Preiss, Real submanifolds in complex space and their mappings, Princeton Mathematical Series 47, Princeton University Press, Princeton, NJ, 1999.Google Scholar
  4. [D1]
    D’Angelo, J., Inequalities from Complex Analysis, Carus Mathematical Monograph No. 28, Mathematics Association of America, 2002.CrossRefMATHGoogle Scholar
  5. [D2]
    D’Angelo, J. An introduction to complex analysis and geometry, Pure and Applied Mathematics Texts, American Math Society, Providence, 2011.Google Scholar
  6. [D3]
    D’Angelo, J., Invariant CR Mappings, pages 95–107 in Complex Analysis: Several complex variables and connections with PDEs and geometry (Fribourg 2008), Trends in Math, Birkhäuser-Verlag.Google Scholar
  7. [D4]
    D’Angelo, J., A monotonicity result for volumes of holomorphic images, Michigan Math J. 54 (2006), 623–646.MathSciNetCrossRefMATHGoogle Scholar
  8. [D5]
    D’Angelo, J., The combinatorics of certain group invariant maps, Complex Variables and Elliptic Equations, Volume 58, Issue 5 (2013), 621–634.CrossRefMathSciNetMATHGoogle Scholar
  9. [DT]
    D’Angelo, J. and Tyson, J., An invitation to Cauchy-Riemann and sub-Riemannian geometries. Notices Amer. Math. Soc. 57 (2010), no. 2, 208219.MathSciNetGoogle Scholar
  10. [Dar]
    Darling, R. W. R., Differential Forms and Connections, Cambridge University Press, Cambridge, 1994.CrossRefMATHGoogle Scholar
  11. [E]
    Epstein, C., Introduction to the Mathematics of Medical Imaging, Prentice Hall, Upper Saddle River, New Jersey, 2003.MATHGoogle Scholar
  12. [F1]
    Folland, G., Real Analysis: Modern techniques and their applications, Second Edition, John Wiley and Sons, New York, 1984.MATHGoogle Scholar
  13. [F2]
    Folland, G., Fourier Analysis and its Applications, Pure and Applied Mathematics Texts, American Math Society, Providence, 2008.Google Scholar
  14. [G]
    Greenberg, M., Advanced Engineering Mathematics, Prentice Hall, Upper Saddle River, New Jersey, 1998.Google Scholar
  15. [GS]
    Goldbart, P. and Stone, M., Mathematics for Physics, Cambridge Univ. Press, Cambridge, 2009.MATHGoogle Scholar
  16. [H]
    Hunt, Bruce J., Oliver Heaviside: A first-rate oddity, Phys. Today 65(11), 48(2012), 48–54.CrossRefGoogle Scholar
  17. [HLP]
    Hardy, G. H., Littlewood, J. E., and Polya, G, Inequalities, Second Edition, Cambridge Univ. Press, Cambridge, 1952.Google Scholar
  18. [HH]
    Hubbard, J. H, and Hubbard, B., Vector Calculus, Linear Algebra, and Differential Forms, Prentice-Hall, Upper Saddle River, New Jersey, 2002.Google Scholar
  19. [HPS]
    Hoel P., Port S., and Stone C., Introduction to probability theory, Houghton Mifflin, Boston, 1971.MATHGoogle Scholar
  20. [K]
    Katznelson, Y., An introduction to harmonic analysis, Dover Publications, New York, 1976.MATHGoogle Scholar
  21. [Ra]
    Rauch, J., Partial Differential Equations, Springer Verlag, New York, 1991.CrossRefMATHGoogle Scholar
  22. [Ro]
    Rosenlicht, M., Introduction to Analysis, Dover Publications, New York, 1968.MATHGoogle Scholar
  23. [S]
    Steele, J. Michael, The Cauchy–Schwarz Master Class, MAA Problem Book Series, Cambridge Univ. Press, Cambridge, 2004.CrossRefGoogle Scholar
  24. [SR]
    Saint Raymond, X., Elementary Introduction to the Theory of Pseudodifferential Operators, CRC Press, Boca Raton, 1991.MATHGoogle Scholar
  25. [SS]
    Stein, E. and Shakarchi, R., Fourier Analysis: An Introduction, Princeton Univ. Press, Princeton, New Jersey, 2003.Google Scholar
  26. [Y]
    Young, N., An introduction to Hilbert space, Cambridge Univ. Press, Cambridge, 1988.CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • John P. D’Angelo
    • 1
  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations