Basic Science of Meniscus Repair: Limitations and Emerging Strategies

  • Feini Qu
  • Matthew B. Fisher
  • Robert L. MauckEmail author


Meniscal tears, especially in the inner avascular zone, have limited healing capacity and a high failure rate when repair is attempted. Endogenous repair, characterized by cell proliferation and matrix deposition at the injury site, is hindered by a lack of vascular supply, low cell density, and a catabolic state induced by inflammation. To biologically augment the healing response, experimental methods have focused on directly addressing these issues by enhancing vascularity, increasing cellularity, and providing an instructive extracellular environment via biochemical and mechanical cues. With further clinical development, these emerging regenerative strategies have potential to render meniscal repair a favorable operation in patients who would otherwise undergo partial meniscectomy (removal of the damaged segment).


Vascular Endothelial Growth Factor Meniscal Tear Fibrin Clot Meniscus Repair Bone Marrow MSCs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Autologous chondrocyte implantation


Basic fibroblast growth factor


Collagen meniscus implant


Extracellular matrix


Green fluorescent protein


Insulin-like growth factor 1


IL-1 receptor antagonist




Matrix metalloproteinase


Mesenchymal stem cell


Perimeniscal capillary plexus


Platelet-derived growth factor AB


Transforming growth factor beta


Tumor necrosis factor alpha


Anti-TNFα monoclonal antibody


Vascular endothelial growth factor



This work was supported by the National Institutes of Health (R01 AR056624), the Department of Veterans Affairs (I01 RX000174), the Penn Center for Musculoskeletal Disorders, and the Musculoskeletal Transplant Foundation. The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the National Institutes of Health, Department of Veterans Affairs, or the US government.


  1. 1.
    Shrive NG, O’Connor JJ, Goodfellow JW. Load-bearing in the knee joint. Clin Orthop Relat Res. 1978;131:279–87.PubMedGoogle Scholar
  2. 2.
    Fithian DC, Kelly MA, Mow VC. Material properties and structure–function relationships in the menisci. Clin Orthop Relat Res. 1990;252:19–31.PubMedGoogle Scholar
  3. 3.
    Hede A, Larsen E, Sandberg H. The long term outcome of open total and partial meniscectomy related to the quantity and site of the meniscus removed. Int Orthop. 1992;16(2):122–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Nielsen AB, Yde J. Epidemiology of acute knee injuries: a prospective hospital investigation. J Trauma. 1991;31(12):1644–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Arendt EA. Orthopaedic knowledge update: sports medicine 2. Rosemont, IL: American Academy of Orthopaedic Surgeons; 1999.Google Scholar
  6. 6.
    Boyd KT, Myers PT. Meniscus preservation; rationale, repair techniques and results. Knee. 2003;10(1):1–11.PubMedCrossRefGoogle Scholar
  7. 7.
    DeHaven KE. Meniscus repair. Am J Sports Med. 1999;27(2):242–50.PubMedGoogle Scholar
  8. 8.
    Morgan CD, Wojtys EM, Casscells CD, Casscells SW. Arthroscopic meniscal repair evaluated by second-look arthroscopy. Am J Sports Med. 1991;19(6):632–7. discussion 7–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Eggli S, Wegmuller H, Kosina J, Huckell C, Jakob RP. Long-term results of arthroscopic meniscal repair. An analysis of isolated tears. Am J Sports Med. 1995;23(6):715–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Miller Jr DB. Arthroscopic meniscus repair. Am J Sports Med. 1988;16(4):315–20.PubMedCrossRefGoogle Scholar
  11. 11.
    Hanks GA, Gause TM, Sebastianelli WJ, O’Donnell CS, Kalenak A. Repair of peripheral meniscal tears: open versus arthroscopic technique. Arthroscopy. 1991;7(1):72–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Rubman MH, Noyes FR, Barber-Westin SD. Arthroscopic repair of meniscal tears that extend into the avascular zone. A review of 198 single and complex tears. Am J Sports Med. 1998;26(1):87–95.PubMedGoogle Scholar
  13. 13.
    Aagaard H, Verdonk R. Function of the normal meniscus and consequences of meniscal resection. Scand J Med Sci Sports. 1999;9(3):134–40.PubMedCrossRefGoogle Scholar
  14. 14.
    Englund M. Meniscal tear: a feature of osteoarthritis. Acta Orthop Scand Suppl. 2004;75(312):1–45.PubMedGoogle Scholar
  15. 15.
    Day B, Mackenzie WG, Shim SS, Leung G. The vascular and nerve supply of the human meniscus. Arthroscopy. 1985;1(1):58–62.PubMedCrossRefGoogle Scholar
  16. 16.
    Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med. 1982;10(2):90–5.PubMedCrossRefGoogle Scholar
  17. 17.
    King D. The function of semilunar cartilages. J Bone Joint Surg Am. 1936;18(4):1069–76.Google Scholar
  18. 18.
    Arnoczky SP, Warren RF. The microvasculature of the meniscus and its response to injury. An experimental study in the dog. Am J Sports Med. 1983;11(3):131–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Ghadially FN, Wedge JH, Lalonde JM. Experimental methods of repairing injured menisci. J Bone Joint Surg Br. 1986;68(1):106–10.PubMedGoogle Scholar
  20. 20.
    Heatley FW. The meniscus—can it be repaired? An experimental investigation in rabbits. J Bone Joint Surg Br. 1980;62(3):397–402.PubMedGoogle Scholar
  21. 21.
    Noyes FR, Barber-Westin SD. Management of meniscus tears that extend into the avascular region. Clin Sports Med. 2012;31(1):65–90.PubMedCrossRefGoogle Scholar
  22. 22.
    Greis PE, Bardana DD, Holmstrom MC, Burks RT. Meniscal injury: I. Basic science and evaluation. J Am Acad Orthop Surg. 2002;10(3):168–76.PubMedGoogle Scholar
  23. 23.
    Clark CR, Ogden JA. Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. J Bone Joint Surg Am. 1983;65(4):538–47.PubMedGoogle Scholar
  24. 24.
    Ionescu LC, Lee GC, Garcia GH, Zachry TL, Shah RP, Sennett BJ, et al. Maturation state-dependent alterations in meniscus integration: implications for scaffold design and tissue engineering. Tissue Eng Part A. 2011;17(1–2):193–204.PubMedCrossRefGoogle Scholar
  25. 25.
    Mesiha M, Zurakowski D, Soriano J, Nielson JH, Zarins B, Murray MM. Pathologic characteristics of the torn human meniscus. Am J Sports Med. 2007;35(1):103–12.PubMedCrossRefGoogle Scholar
  26. 26.
    Kobayashi K, Fujimoto E, Deie M, Sumen Y, Ikuta Y, Ochi M. Regional differences in the healing potential of the meniscus––an organ culture model to eliminate the influence of microvasculature and the synovium. Knee. 2004;11(4):271–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Upton ML, Chen J, Setton LA. Region-specific constitutive gene expression in the adult porcine meniscus. J Orthop Res. 2006;24(7):1562–70.PubMedCrossRefGoogle Scholar
  28. 28.
    McDevitt CA, Murkherjee S, Kambic H, Parker R. Emerging concepts of the cell biology of the meniscus. Curr Opin Orthop. 2002;13:345–50.CrossRefGoogle Scholar
  29. 29.
    Hellio Le Graverand MP, Ou Y, Schield-Yee T, Barclay L, Hart D, Natsume T, et al. The cells of the rabbit meniscus: their arrangement, interrelationship, morphological variations and cytoarchitecture. J Anat. 2001;198(5):525–35.PubMedCrossRefGoogle Scholar
  30. 30.
    Fuller ES, Smith MM, Little CB, Melrose J. Zonal differences in meniscus matrix turnover and cytokine response. Osteoarthritis Cartilage. 2012;20(1):49–59.PubMedCrossRefGoogle Scholar
  31. 31.
    McDevitt CA, Webber RJ. The ultrastructure and biochemistry of meniscal cartilage. Clin Orthop Relat Res. 1992;252:8–18.Google Scholar
  32. 32.
    McNulty AL, Moutos FT, Weinberg JB, Guilak F. Enhanced integrative repair of the porcine meniscus in vitro by inhibition of interleukin-1 or tumor necrosis factor alpha. Arthritis Rheum. 2007;56(9):3033–42.PubMedCrossRefGoogle Scholar
  33. 33.
    McNulty AL, Weinberg JB, Guilak F. Inhibition of matrix metalloproteinases enhances in vitro repair of the meniscus. Clin Orthop Relat Res. 2009;467(6):1557–67.PubMedCrossRefGoogle Scholar
  34. 34.
    McNulty AL, Estes BT, Wilusz RE, Weinberg JB, Guilak F. Dynamic loading enhances integrative meniscal repair in the presence of interleukin-1. Osteoarthritis Cartilage. 2010;18(6):830–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Upton ML, Chen J, Guilak F, Setton LA. Differential effects of static and dynamic compression on meniscal cell gene expression. J Orthop Res. 2003;21(6):963–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Okuda K, Ochi M, Shu N, Uchio Y. Meniscal rasping for repair of meniscal tear in the avascular zone. Arthroscopy. 1999;15(3):281–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Ochi M, Uchio Y, Okuda K, Shu N, Yamaguchi H, Sakai Y. Expression of cytokines after meniscal rasping to promote meniscal healing. Arthroscopy. 2001;17(7):724–31.PubMedCrossRefGoogle Scholar
  38. 38.
    Uchio Y, Ochi M, Adachi N, Kawasaki K, Iwasa J. Results of rasping of meniscal tears with and without anterior cruciate ligament injury as evaluated by second-look arthroscopy. Arthroscopy. 2003;19(5):463–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Gershuni DH, Skyhar MJ, Danzig LA, Camp J, Hargens AR, Akeson WH. Experimental models to promote healing of tears in the avascular segment of canine knee menisci. J Bone Joint Surg Am. 1989;71(9):1363–70.PubMedGoogle Scholar
  40. 40.
    Zhang ZN, Tu KY, Xu YK, Zhang WM, Liu ZT, Ou SH. Treatment of longitudinal injuries in avascular area of meniscus in dogs by trephination. Arthroscopy. 1988;4(3):151–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang Z, Arnold JA, Williams T, McCann B. Repairs by trephination and suturing of longitudinal injuries in the avascular area of the meniscus in goats. Am J Sports Med. 1995;23(1):35–41.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang Z, Arnold JA. Trephination and suturing of avascular meniscal tears: a clinical study of the trephination procedure. Arthroscopy. 1996;12(6):726–31.PubMedCrossRefGoogle Scholar
  43. 43.
    Cook JL, Fox DB. A novel bioabsorbable conduit augments healing of avascular meniscal tears in a dog model. Am J Sports Med. 2007;35(11):1877–87.PubMedCrossRefGoogle Scholar
  44. 44.
    Henning CE, Lynch MA, Clark JR. Vascularity for healing of meniscus repairs. Arthroscopy. 1987;3(1):13–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Ochi M, Mochizuki Y, Deie M, Ikuta Y. Augmented meniscal healing with free synovial autografts: an organ culture model. Arch Orthop Trauma Surg. 1996;115(3–4):123–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Jitsuiki J, Ochi M, Ikuta Y. Meniscal repair enhanced by an interpositional free synovial autograft: an experimental study in rabbits. Arthroscopy. 1994;10(6):659–66.PubMedCrossRefGoogle Scholar
  47. 47.
    Yamazaki K, Tachibana Y. Vascularized synovial flap promoting regeneration of the cryopreserved meniscal allograft: experimental study in rabbits. J Orthop Sci. 2003;8(1):62–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Kambic HE, Futani H, McDevitt CA. Cell, matrix changes and alpha-smooth muscle actin expression in repair of the canine meniscus. Wound Repair Regen. 2000;8(6):554–61.PubMedCrossRefGoogle Scholar
  49. 49.
    Hu SY, Wang S, Zuo RT, Wang KL, Qin L. Meniscus and synovial membrane: an electron microscopic study on rabbits. Can J Appl Physiol. 2001;26(3):254–60.PubMedCrossRefGoogle Scholar
  50. 50.
    Petersen W, Pufe T, Starke C, Fuchs T, Kopf S, Neumann W, et al. The effect of locally applied vascular endothelial growth factor on meniscus healing: gross and histological findings. Arch Orthop Trauma Surg. 2007;127(4):235–40.PubMedCrossRefGoogle Scholar
  51. 51.
    Kopf S, Birkenfeld F, Becker R, Petersen W, Starke C, Wruck CJ, et al. Local treatment of meniscal lesions with vascular endothelial growth factor. J Bone Joint Surg Am. 2010;92(16):2682–91.PubMedCrossRefGoogle Scholar
  52. 52.
    King TV, Vallee BL. Neovascularisation of the meniscus with angiogenin. An experimental study in rabbits. J Bone Joint Surg Br. 1991;73(4):587–90.PubMedGoogle Scholar
  53. 53.
    Phillips GD, Stone AM, Jones BD, Schultz JC, Whitehead RA, Knighton DR. Vascular endothelial growth factor (rhVEGF165) stimulates direct angiogenesis in the rabbit cornea. In Vivo. 1994;8(6):961–5.PubMedGoogle Scholar
  54. 54.
    Gao X, Xu Z. Mechanisms of action of angiogenin. Acta Biochim Biophys Sin (Shanghai). 2008;40(7):619–24.CrossRefGoogle Scholar
  55. 55.
    Richardson TP, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual growth factor delivery. Nat Biotechnol. 2001;19(11):1029–34.PubMedCrossRefGoogle Scholar
  56. 56.
    Ionescu LC, Fisher MB, Schenker ML, Esterhai JL, Mauck RL. VEGF delivery from electrospun composites increases vascular density in vivo. Orthopaedic Research Society annual meeting 2012. Abstract #0634.Google Scholar
  57. 57.
    Webber RJ, Harris MG, Hough Jr AJ. Cell culture of rabbit meniscal fibrochondrocytes: proliferative and synthetic response to growth factors and ascorbate. J Orthop Res. 1985;3(1):36–42.PubMedCrossRefGoogle Scholar
  58. 58.
    Arnoczky SP, Warren RF, Spivak JM. Meniscal repair using an exogenous fibrin clot. An experimental study in dogs. J Bone Joint Surg Am. 1988;70(8):1209–17.PubMedGoogle Scholar
  59. 59.
    Nakhostine M, Gershuni DH, Danzig LA. Effects of an in-substance conduit with injection of a blood clot on tears in the avascular region of the meniscus. Acta Orthop Belg. 1991;57(3):242–6.PubMedGoogle Scholar
  60. 60.
    Henning CE, Lynch MA, Yearout KM, Vequist SW, Stallbaumer RJ, Decker KA. Arthroscopic meniscal repair using an exogenous fibrin clot. Clin Orthop Relat Res. 1990;252:64–72.PubMedGoogle Scholar
  61. 61.
    Henning CE, Yearout KM, Vequist SW, Stallbaumer RJ, Decker KA. Use of the fascia sheath coverage and exogenous fibrin clot in the treatment of complex meniscal tears. Am J Sports Med. 1991;19(6):626–31.PubMedCrossRefGoogle Scholar
  62. 62.
    van Trommel MF, Simonian PT, Potter HG, Wickiewicz TL. Arthroscopic meniscal repair with fibrin clot of complete radial tears of the lateral meniscus in the avascular zone. Arthroscopy. 1998;14(4):360–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Ra HJ, Ha JK, Jang SH, Lee DW, Kim JG. Arthroscopic inside-out repair of complete radial tears of the meniscus with a fibrin clot. Knee Surg Sports Traumatol Arthrosc. 2012. doi: 10.1007/s00167-012-2191-3. Print ISSN: 0942–2056. Online ISSN: 1433–7347.
  64. 64.
    Jang SH, Ha JK, Lee DW, Kim JG. Fibrin clot delivery system for meniscal repair. Knee Surg Relat Res. 2011;23(3):180–3.PubMedCrossRefGoogle Scholar
  65. 65.
    Sethi PM, Cooper A, Jokl P. Technical tips in orthopaedics: meniscal repair with use of an in situ fibrin clot. Arthroscopy. 2003;19(5):E44.PubMedCrossRefGoogle Scholar
  66. 66.
    Freedman KB, Nho SJ, Cole BJ. Marrow stimulating technique to augment meniscus repair. Arthroscopy. 2003;19(7):794–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Driscoll MD, Robin BN, Horie M, Hubert ZT, Sampson HW, Jupiter DC, et al. Marrow stimulation improves meniscal healing at early endpoints in a rabbit meniscal injury model. Arthroscopy. 2013;29(1):113–21.PubMedCrossRefGoogle Scholar
  68. 68.
    Cook JL, Fox DB, Malaviya P, Tomlinson JL, Kuroki K, Cook CR, et al. Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model. Am J Sports Med. 2006;34(1):32–42.PubMedCrossRefGoogle Scholar
  69. 69.
    Fox DB, Cook JL, Arnoczky SP, Tomlinson JL, Kuroki K, Kreeger JM, et al. Fibrochondrogenesis of free intraarticular small intestinal submucosa scaffolds. Tissue Eng. 2004;10(1–2):129–37.PubMedCrossRefGoogle Scholar
  70. 70.
    Bradley MP, Fadale PD, Hulstyn MJ, Muirhead WR, Lifrak JT. Porcine small intestine submucosa for repair of goat meniscal defects. Orthopedics. 2007;30(8):650–6.PubMedGoogle Scholar
  71. 71.
    Gastel JA, Muirhead WR, Lifrak JT, Fadale PD, Hulstyn MJ, Labrador DP. Meniscal tissue regeneration using a collagenous biomaterial derived from porcine small intestine submucosa. Arthroscopy. 2001;17(2):151–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Hoben GM, Athanasiou KA. Meniscal repair with fibrocartilage engineering. Sports Med Arthrosc. 2006;14(3):129–37.PubMedCrossRefGoogle Scholar
  73. 73.
    Iwanaga T, Shikichi M, Kitamura H, Yanase H, Nozawa-Inoue K. Morphology and functional roles of synoviocytes in the joint. Arch Histol Cytol. 2000;63(1):17–31.PubMedCrossRefGoogle Scholar
  74. 74.
    Arnoczky SP, Warren RF, Kaplan N. Meniscal remodeling following partial meniscectomy—an experimental study in the dog. Arthroscopy. 1985;1(4):247–52.PubMedCrossRefGoogle Scholar
  75. 75.
    Arnoczky SP, DiCarlo EF, O’Brien SJ, Warren RF. Cellular repopulation of deep-frozen meniscal autografts: an experimental study in the dog. Arthroscopy. 1992;8(4):428–36.PubMedCrossRefGoogle Scholar
  76. 76.
    Rodeo SA, Seneviratne A, Suzuki K, Felker K, Wickiewicz TL, Warren RF. Histological analysis of human meniscal allografts. A preliminary report. J Bone Joint Surg Am. 2000;82-A(8):1071–82.PubMedGoogle Scholar
  77. 77.
    Nakhostine M, Gershuni DH, Anderson R, Danzig LA, Weiner GM. Effects of abrasion therapy on tears in the avascular region of sheep menisci. Arthroscopy. 1990;6(4):280–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Peretti GM, Gill TJ, Xu JW, Randolph MA, Morse KR, Zaleske DJ. Cell-based therapy for meniscal repair: a large animal study. Am J Sports Med. 2004;32(1):146–58.PubMedCrossRefGoogle Scholar
  79. 79.
    Weinand C, Peretti GM, Adams Jr SB, Randolph MA, Savvidis E, Gill TJ. Healing potential of transplanted allogeneic chondrocytes of three different sources in lesions of the avascular zone of the meniscus: a pilot study. Arch Orthop Trauma Surg. 2006;126(9):599–605.PubMedCrossRefGoogle Scholar
  80. 80.
    Nakata K, Shino K, Hamada M, Mae T, Miyama T, Shinjo H, et al. Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin Orthop Relat Res. 2001;391 Suppl:S208–18.Google Scholar
  81. 81.
    Mueller SM, Shortkroff S, Schneider TO, Breinan HA, Yannas IV, Spector M. Meniscus cells seeded in type I and type II collagen-GAG matrices in vitro. Biomaterials. 1999;20(8):701–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Ibarra C, Koski JA, Warren RF. Tissue engineering meniscus: cells and matrix. Orthop Clin North Am. 2000;31(3):411–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Baker BM, Nathan AS, Huffman GR, Mauck RL. Tissue engineering with meniscus cells derived from surgical debris. Osteoarthritis Cartilage. 2009;17(3):336–45.PubMedCrossRefGoogle Scholar
  84. 84.
    Freymann U, Endres M, Neumann K, Scholman HJ, Morawietz L, Kaps C. Expanded human meniscus-derived cells in 3-D polymer-hyaluronan scaffolds for meniscus repair. Acta Biomater. 2012;8(2):677–85.PubMedCrossRefGoogle Scholar
  85. 85.
    Abdel-Hamid M, Hussein MR, Ahmad AF, Elgezawi EM. Enhancement of the repair of meniscal wounds in the red–white zone (middle third) by the injection of bone marrow cells in canine animal model. Int J Exp Pathol. 2005;86(2):117–23.PubMedCrossRefGoogle Scholar
  86. 86.
    Mizuno K, Muneta T, Morito T, Ichinose S, Koga H, Nimura A, et al. Exogenous synovial stem cells adhere to defect of meniscus and differentiate into cartilage cells. J Med Dent Sci. 2008;55(1):101–11.PubMedGoogle Scholar
  87. 87.
    Horie M, Sekiya I, Muneta T, Ichinose S, Matsumoto K, Saito H, et al. Intra-articular Injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect. Stem Cells. 2009;27(4):878–87.PubMedCrossRefGoogle Scholar
  88. 88.
    Horie M, Driscoll MD, Sampson HW, Sekiya I, Caroom CT, Prockop DJ, et al. Implantation of allogenic synovial stem cells promotes meniscal regeneration in a rabbit meniscal defect model. J Bone Joint Surg Am. 2012;94(8):701–12.PubMedCrossRefGoogle Scholar
  89. 89.
    Ruiz-Iban MA, Diaz-Heredia J, Garcia-Gomez I, Gonzalez-Lizan F, Elias-Martin E, Abraira V. The effect of the addition of adipose-derived mesenchymal stem cells to a meniscal repair in the avascular zone: an experimental study in rabbits. Arthroscopy. 2011;27(12):1688–96.PubMedCrossRefGoogle Scholar
  90. 90.
    Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D. Regeneration of meniscus cartilage in a knee treated with percutaneously implanted autologous mesenchymal stem cells. Med Hypotheses. 2008;71(6):900–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Agung M, Ochi M, Yanada S, Adachi N, Izuta Y, Yamasaki T, et al. Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration. Knee Surg Sports Traumatol Arthrosc. 2006;14(12):1307–14.PubMedCrossRefGoogle Scholar
  92. 92.
    Dutton AQ, Choong PF, Goh JC, Lee EH, Hui JH. Enhancement of meniscal repair in the avascular zone using mesenchymal stem cells in a porcine model. J Bone Joint Surg Br. 2010;92(1):169–75.PubMedCrossRefGoogle Scholar
  93. 93.
    Izuta Y, Ochi M, Adachi N, Deie M, Yamasaki T, Shinomiya R. Meniscal repair using bone marrow-derived mesenchymal stem cells: experimental study using green fluorescent protein transgenic rats. Knee. 2005;12(3):217–23.PubMedCrossRefGoogle Scholar
  94. 94.
    Pabbruwe MB, Kafienah W, Tarlton JF, Mistry S, Fox DJ, Hollander AP. Repair of meniscal cartilage white zone tears using a stem cell/collagen-scaffold implant. Biomaterials. 2010;31(9):2583–91.PubMedCrossRefGoogle Scholar
  95. 95.
    Zellner J, Mueller M, Berner A, Dienstknecht T, Kujat R, Nerlich M, et al. Role of mesenchymal stem cells in tissue engineering of meniscus. J Biomed Mater Res A. 2010;94(4):1150–61.PubMedGoogle Scholar
  96. 96.
    Ionescu LC, Mauck RL. Porosity and cell preseeding influence electrospun scaffold maturation and meniscus integration in vitro. Tissue Eng Part A. 2013;19(3–4):538–47.PubMedCrossRefGoogle Scholar
  97. 97.
    Collier S, Ghosh P. Effects of transforming growth factor beta on proteoglycan synthesis by cell and explant cultures derived from the knee joint meniscus. Osteoarthritis Cartilage. 1995;3(2):127–38.PubMedCrossRefGoogle Scholar
  98. 98.
    Ionescu LC, Lee GC, Huang KL, Mauck RL. Growth factor supplementation improves native and engineered meniscus repair in vitro. Acta Biomater. 2012;8(10):3687–94.PubMedCrossRefGoogle Scholar
  99. 99.
    Imler SM, Doshi AN, Levenston ME. Combined effects of growth factors and static mechanical compression on meniscus explant biosynthesis. Osteoarthritis Cartilage. 2004;12(9):736–44.PubMedCrossRefGoogle Scholar
  100. 100.
    Esparza R, Gortazar AR, Forriol F. Cell study of the three areas of the meniscus: effect of growth factors in an experimental model in sheep. J Orthop Res. 2012;30(10):1647–51.PubMedCrossRefGoogle Scholar
  101. 101.
    McNulty AL, Guilak F. Integrative repair of the meniscus: lessons from in vitro studies. Biorheology. 2008;45(3–4):487–500.PubMedGoogle Scholar
  102. 102.
    Kasemkijwattana C, Menetrey J, Goto H, Niyibizi C, Fu FH, Huard J. The use of growth factors, gene therapy and tissue engineering to improve meniscal healing. Mater Sci Eng C. 2000;13(1):19–28.CrossRefGoogle Scholar
  103. 103.
    Spindler KP, Mayes CE, Miller RR, Imro AK, Davidson JM. Regional mitogenic response of the meniscus to platelet-derived growth factor (PDGF-AB). J Orthop Res. 1995;13(2):201–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Tumia NS, Johnstone AJ. Platelet derived growth factor-AB enhances knee meniscal cell activity in vitro. Knee. 2009;16(1):73–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Lietman SA, Hobbs W, Inoue N, Reddi AH. Effects of selected growth factors on porcine meniscus in chemically defined medium. Orthopedics. 2003;26(8):799–803.PubMedGoogle Scholar
  106. 106.
    Bhargava MM, Attia ET, Murrell GA, Dolan MM, Warren RF, Hannafin JA. The effect of cytokines on the proliferation and migration of bovine meniscal cells. Am J Sports Med. 1999;27(5):636–43.PubMedGoogle Scholar
  107. 107.
    Tumia NS, Johnstone AJ. Regional regenerative potential of meniscal cartilage exposed to recombinant insulin-like growth factor-I in vitro. J Bone Joint Surg Br. 2004;86(7):1077–81.PubMedCrossRefGoogle Scholar
  108. 108.
    Tumia NS, Johnstone AJ. Promoting the proliferative and synthetic activity of knee meniscal fibrochondrocytes using basic fibroblast growth factor in vitro. Am J Sports Med. 2004;32(4):915–20.PubMedCrossRefGoogle Scholar
  109. 109.
    Narita A, Takahara M, Ogino T, Fukushima S, Kimura Y, Tabata Y. Effect of gelatin hydrogel incorporating fibroblast growth factor 2 on human meniscal cells in an organ culture model. Knee. 2009;16(4):285–9.PubMedCrossRefGoogle Scholar
  110. 110.
    DiMicco MA, Waters SN, Akeson WH, Sah RL. Integrative articular cartilage repair: dependence on developmental stage and collagen metabolism. Osteoarthritis Cartilage. 2002;10(3):218–25.PubMedCrossRefGoogle Scholar
  111. 111.
    Upton ML, Hennerbichler A, Fermor B, Guilak F, Weinberg JB, Setton LA. Biaxial strain effects on cells from the inner and outer regions of the meniscus. Connect Tissue Res. 2006;47(4):207–14.PubMedCrossRefGoogle Scholar
  112. 112.
    Baker BM, Shah RP, Huang AH, Mauck RL. Dynamic tensile loading improves the functional properties of mesenchymal stem cell-laden nanofiber-based fibrocartilage. Tissue Eng Part A. 2011;17(9–10):1445–55.PubMedCrossRefGoogle Scholar
  113. 113.
    Natsu-Ume T, Majima T, Reno C, Shrive NG, Frank CB, Hart DA. Menisci of the rabbit knee require mechanical loading to maintain homeostasis: cyclic hydrostatic compression in vitro prevents derepression of catabolic genes. J Orthop Sci. 2005;10(4):396–405.PubMedCrossRefGoogle Scholar
  114. 114.
    Zielinska B, Killian M, Kadmiel M, Nelsen M, Haut Donahue TL. Meniscal tissue explants response depends on level of dynamic compressive strain. Osteoarthritis Cartilage. 2009;17(6):754–60.PubMedCrossRefGoogle Scholar
  115. 115.
    Nishimuta JF, Levenston ME. Response of cartilage and meniscus tissue explants to in vitro compressive overload. Osteoarthritis Cartilage. 2012;20(5):422–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Dowdy PA, Miniaci A, Arnoczky SP, Fowler PJ, Boughner DR. The effect of cast immobilization on meniscal healing. An experimental study in the dog. Am J Sports Med. 1995;23(6):721–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Bray RC, Smith JA, Eng MK, Leonard CA, Sutherland CA, Salo PT. Vascular response of the meniscus to injury: effects of immobilization. J Orthop Res. 2001;19(3):384–90.PubMedCrossRefGoogle Scholar
  118. 118.
    Huang TL, Lin GT, O’Connor S, Chen DY, Barmada R. Healing potential of experimental meniscal tears in the rabbit. Preliminary results. Clin Orthop Relat Res. 1991;267:299–305.PubMedGoogle Scholar
  119. 119.
    Ochi M, Kanda T, Sumen Y, Ikuta Y. Changes in the permeability and histologic findings of rabbit menisci after immobilization. Clin Orthop Relat Res. 1997;334:305–15.PubMedCrossRefGoogle Scholar
  120. 120.
    Guisasola I, Vaquero J, Forriol F. Knee immobilization on meniscal healing after suture: an experimental study in sheep. Clin Orthop Relat Res. 2002;395:227–33.PubMedCrossRefGoogle Scholar
  121. 121.
    Pavlovich RI. Hi-frequency electrical cautery stimulation in the treatment of displaced meniscal tears. Arthroscopy. 1998;14(6):566–71.PubMedCrossRefGoogle Scholar
  122. 122.
    Qu F, Esterhai JL, Mauck RL. Modulation of the meniscus repair interface via collagenase delivery from nanofibrous composites. Orthopaedic Research Society annual meeting 2012. Abstract #0776.Google Scholar
  123. 123.
    Zhang H, Leng P, Zhang J. Enhanced meniscal repair by overexpression of hIGF-1 in a full-thickness model. Clin Orthop Relat Res. 2009;467(12):3165–74.PubMedCrossRefGoogle Scholar
  124. 124.
    Vrancken AC, Buma P, van Tienen TG. Synthetic meniscus replacement: a review. Int Orthop. 2013;37(2):291–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Ballyns JJ, Gleghorn JP, Niebrzydowski V, Rawlinson JJ, Potter HG, Maher SA, et al. Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng Part A. 2008;14(7):1195–202.PubMedCrossRefGoogle Scholar
  126. 126.
    Fisher MB, Henning EA, Soegaard N, Esterhai JL, Mauck RL. Organized nanofibrous scaffolds that mimic the macroscopic and microscopic architecture of the knee meniscus. Acta Biomater. 2013;9(1):4496–504.PubMedCrossRefGoogle Scholar
  127. 127.
    Qu F, Lin J, Esterhai JL, Fisher MB, Mauck RL. Improved meniscus integration via controlled degradation of the wound interface. Orthopaedic Research Society annual meeting 2013. Abstract #0562.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Feini Qu
    • 1
  • Matthew B. Fisher
    • 1
  • Robert L. Mauck
    • 2
    Email author
  1. 1.Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Mckay Orthopaedic Research LaboratoryUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations