Advertisement

Charged Particle Transport in a Collisionless Magnetized Plasma

  • Gary P. Zank
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 877)

Abstract

The solar wind, undoubtedly like many other astrophysical plasmas, is essentially collisionless and the description of a plasma based on particle collisions as described in Chap. 3 is inappropriate. Instead, interplanetary plasmas and astrophysical plasmas typically possess numerous waves and fluctuations that include a fluctuating magnetic field. Many studies, beginning with the landmark observational studies of Belcher and Davis (1971) and Coleman (1968) revealed the presence of both Alfvén waves and extended power-law spectra for the energy density of solar wind magnetic fluctuations. These low frequency magnetic field fluctuations can be interpreted in terms of an MHD turbulence description. The turbulence description of fluctuations in the solar wind has become increasingly refined, and today, solar wind turbulence is thought to comprise a superposition of propagating Alfvénic fluctuations (the minority component, sometimes called the slab component) and a dominant 2D component that is non-propagating. The two-dimensional component has velocity and magnetic field components and wave numbers nearly perpendicular to the background magnetic field with “zero frequency.

Keywords

Solar Wind Energetic Particle Correlation Tensor Magnetic Turbulence Diffusive Shock Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1974)Google Scholar
  2. W.I. Axford, in Proceedings of the 10th Texas Symposium on Relativistic Astrophysics, Baltimore, 1981. Annals of the New York Academy of Sciences, vol. 375, pp. 297–313Google Scholar
  3. W.I. Axford, E. Leer, G. Skadron, in Proceedings of the 15th International Cosmic Ray Conference, Plovdiv, 1977, vol. 11, pp. 132–137Google Scholar
  4. G.K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge, 1953)zbMATHGoogle Scholar
  5. J.W. Belcher, L. Davis, J. Geophys. Res. (Space) 76, 3534 (1971)ADSCrossRefGoogle Scholar
  6. A.R. Bell, Mon. Not. R. Astron. Soc. 182 147–156 (1978)ADSGoogle Scholar
  7. R.D. Blandford, J.P. Ostriker, Astrophys. J. 221, L29–L32 (1978)ADSCrossRefGoogle Scholar
  8. P.J. Coleman, Astrophys. J. 153, 371 (1968)ADSCrossRefGoogle Scholar
  9. S. Corrsin, Progress report on some turbulent diffusion research, in Atmospheric Diffusion and Air Pollution, ed. by F. Frenkiel, P. Sheppard. Advances in Geophysics, vol. 6 (Academic, New York, 1959)Google Scholar
  10. L.O’C. Drury, An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys. 46, 973–1027 (1983)Google Scholar
  11. L.O’C. Drury, S.A.E.G. Falle, Mon. Not. R. Astron. Soc. 223, 353 (1986)Google Scholar
  12. M.A. Forman, G.M. Webb, Acceleration of energetic particles, in Collisionless Shocks in the Heliosphere: A Tutorial Review, ed. by R.G. Stone, B.T. Tsuratani. Monograph, vol. 34, (American Geophysical Union, Washington, DC, 1985), pp. 91–114Google Scholar
  13. P.A. Isenberg, A hemispherical model of anisotropic interstellar pickup ions. J. Geophys. Res. 102, 4719–4724 (1997)ADSCrossRefGoogle Scholar
  14. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)zbMATHGoogle Scholar
  15. A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk. SSSR 30, 310 (1941)ADSGoogle Scholar
  16. G.F. Krymsky, Sov. Phys.-Dokl. 23, 327 (1977)Google Scholar
  17. J.A. le Roux, G.M. Webb, Nonlinear cosmic ray diffusive transport in combined two-dimensional and slab magnetohydrodynamic turbulence: a BGK-Boltzmann approach. Astrophys. J. 667, 930 (2007)ADSCrossRefGoogle Scholar
  18. J.A. le Roux, G.M. Webb, A focused transport approach to the time-dependent shock acceleration of solar energetic particles at a fast traveling shock. Astrophys. J. 746, 104 (2012)ADSCrossRefGoogle Scholar
  19. J.A. le Roux, G.P. Zank, L.J. Milan, W.H. Matthaeus, Energetic charged particle transport and energization in dynamic two-dimensional turbulence. Astrophys. J. 602, 396 (2004)ADSCrossRefGoogle Scholar
  20. W.H. Matthaeus, C.W. Smith, Structure of correlation tensors in homogeneous anisotropic turbulence. Phys. Rev. A 24, 2135 (1981)ADSCrossRefGoogle Scholar
  21. W.H. Matthaeus, G. Qin, J.W. Bieber, G.P. Zank, Nonlinear collisionless perpendicular diffusion of charged particles. Astrophys. J. 590, L53 (2003)ADSCrossRefGoogle Scholar
  22. J. Skilling, Cosmic rays in the galaxy: convection or diffusion? Astrophys. J. 170, 265 (1971)ADSCrossRefGoogle Scholar
  23. A. Shalchi, Nonlinear Cosmic Ray Diffusion Theories. Astrophysics and Space Science Library (Springer, Berlin/Heidelberg, 2009). doi:10.1007/978-3-642-00309-7-2CrossRefGoogle Scholar
  24. A. Shalchi, J.W. Bieber, W.H. Matthaeus, Analytic forms of the perpendicular diffusion coefficient in magnetostatic turbulence. Astrophys. J. 604, 675 (2004)ADSCrossRefGoogle Scholar
  25. R.C. Tautz, I. Lerche, Magnetic field line random walk in non-axisymmetric turbulence. Phys. Lett. A 375, 2587–2595 (2011)MathSciNetADSCrossRefzbMATHGoogle Scholar
  26. G.M. Webb, Astron. Astrophys. 127, 97 (1983)ADSzbMATHGoogle Scholar
  27. G.P. Zank, Oscillatory cosmic ray shock structures. Astrophys. Space Sci. 140, 301–324 (1988)ADSCrossRefzbMATHGoogle Scholar
  28. G.P. Zank, J.F. McKenzie, Short-wavelength compressive instabilities in cosmic ray shocks and heat conduction flows. J. Plasma Phys. 37, 347–361 (1987)ADSCrossRefGoogle Scholar
  29. G.P. Zank, W.I. Axford, J.F. McKenzie, Instabilities in energetic particle modified shocks. Astron. Astrophys. 233, 275–284 (1990)ADSzbMATHGoogle Scholar
  30. G.P. Zank, W.K.M. Rice, C.C. Wu, Particle acceleration at coronal mass ejection driven shocks: a theoretical model. J. Geophys. Res. (Space) 105(A11), 25079–25095 (2000)Google Scholar
  31. G.P. Zank, G. Li, V. Florinski, W.H. Matthaeus, G.M. Webb, J.A. le Roux, Perpendicular diffusion coefficient for charged particles of arbitrary energy. J. Geophys. Res. (Space) 109, A04107 (2004)Google Scholar
  32. G.P. Zank, G. Li, V. Florinski, Q. Hu, D. Lario, C.W. Smith, Particle acceleration at perpendicular shock waves: model and observations. J. Geophys. Res. (Space) 111, A06108 (2006). doi:10.1029/2005JA011524Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Gary P. Zank
    • 1
  1. 1.CSPARUniversity of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations