Skip to main content

Peridynamic Thermal Diffusion

Abstract

The peridynamic (PD) theory can be applied to other physical fields such as thermal diffusion, neutronic diffusion, vacancy diffusion, and electrical potential distribution. This paves the way for fully coupling various field equations and deformation within the framework of peridynamics using the same computational domain.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agwai A (2011) A peridynamic approach for coupled fields. Dissertation, University of Arizona

    Google Scholar 

  • Alvarez FX, Jou D (2007) Memory and nonlocal effects in heat transport: from diffusive to ballistic regimes. Appl Phys Lett 90:083109

    Article  Google Scholar 

  • Bathe K (1996) Finite element procedures. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Bobaru F, Duangpanya M (2010) The peridynamic formulation for transient heat conduction. Int J Heat Mass Transf 53:4047–4059

    Article  MATH  Google Scholar 

  • Bobaru F, Duangpanya M (2012) The peridynamic formulation for transient heat conduction in bodies with discontinuities. Int J Comp Phys 231:2764–2785

    Article  MathSciNet  MATH  Google Scholar 

  • Chang CY, Ma CC (2001) Transient thermal conduction analysis of a rectangular plate with multiple insulated cracks by the alternating method. Int J Heat Mass Transf 44:2423–2437

    Article  MATH  Google Scholar 

  • Chen G (2002) Ballistic-diffusive equations for transient heat conduction from nano to macroscales. Trans ASME J Heat Transf 124:320–328

    Article  Google Scholar 

  • Chen WH, Chang CL (1994) Heat conduction analysis of a plate with multiple insulated cracks by the finite element alternating method. Int J Solids Struct 3:1343–1355

    Google Scholar 

  • Dorfman AS (2004) Transient heat transfer between a semi-infinite hot plate and a flowing cooling liquid film. Trans ASME J Heat Transf 126:149–154

    Article  Google Scholar 

  • Duffey RB, Porthous D (1973) Physics of rewetting in water reactor emergency core cooling. Nucl Eng Des 25:379–394

    Article  Google Scholar 

  • Gerstle W, Silling S, Read D, Tewary V, Lehoucq R (2008) Peridynamic simulation of electromigration. Comput Mater Continua 8:75–92

    Google Scholar 

  • Grmela M, Lebon G (1998) Finite-speed propagation of heat: a nonlocal and nonlinear approach. Physica A 248:428–441

    Article  Google Scholar 

  • Hosseini-Tehrani P, Eslami MR (2000) BEM analysis of thermal and mechanical shock in a two-dimensional finite domain considering coupled thermoelasticity. Eng Anal Bound Elem 24:249–257

    Article  MATH  Google Scholar 

  • Jiji ML (2009) Heat conduction. Springer, Berlin/Heidelberg

    Book  MATH  Google Scholar 

  • Lebon G, Grmela M (1996) Weakly nonlocal heat conduction in rigid solids. Phys Lett A 214:184–188

    Article  Google Scholar 

  • Luciani JF, Mora P, Virmont J (1983) Nonlocal heat-transport due to steep temperature-gradients. Phys Rev Lett 51:1664–1667

    Article  Google Scholar 

  • Mahan GD, Claro F (1988) Nonlocal theory of thermal-conductivity. Phys Rev B 38:1963–1969

    Article  Google Scholar 

  • Moiseiwitsch BL (2004) Variational principles. Dover, Mineola

    MATH  Google Scholar 

  • Özişik MN (1980) Heat conduction, 2nd edn. Wiley, New York

    Google Scholar 

  • Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83:1526–1535

    Article  Google Scholar 

  • Sobolev SL (1994) Equations of transfer in nonlocal media. Int J Heat Mass Transf 37:2175–2182

    Article  MATH  Google Scholar 

  • Tien CL, Chen G (1994) Challenges in microscale conductive and radiative heat-transfer. Trans ASME J Heat Transf 116:799–807

    Article  Google Scholar 

  • Tzou DY, Guo Z (2010) Non local behavior in thermal lagging. Int J Therm Sci 49:1133–1137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Madenci, E., Oterkus, E. (2014). Peridynamic Thermal Diffusion. In: Peridynamic Theory and Its Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8465-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8465-3_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8464-6

  • Online ISBN: 978-1-4614-8465-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics