Skip to main content

Dropwise Condensation: Experiments

  • Chapter
  • First Online:
Dropwise Condensation on Inclined Textured Surfaces

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

Experimental determination of the heat transfer coefficient during dropwise condensation is a difficult task because of the many intricacies involved. The driving temperature difference is small, essentially resulting in a high heat transfer coefficient. Further, uncertainties associated with the microscale substructure of contact line shapes and motions, dynamic temperature variations below the condensing drops, effect of roughness and inhomogeneity of the substrate structure, control of true boundary conditions, microscale instrumentation, and transport dynamics of coalescence, merger, wipe-off, renucleation cycles, and the leaching rates of the promoter layer add to the difficulty in conducting repeatable experiments. Very high heat transfer rates (and therefore a very low temperature differential) coupled with the above factors also hinder generation of repeatable experimental data. Consequently, many conflicting experimental results have been published over the years, some results showing considerable scatter.

In the present chapter, experiments on creating textured surfaces for dropwise condensation and the measurement of heat transfer coefficient are reviewed. Details of the experimental set-up and preparation of a chemically textured nonwetting surface for observation of dropwise condensation of water vapor underneath a horizontal and an inclined substrate are reported. Chemical texturing of glass is achieved by silanation using octyl-decyl-tri-chloro-silane (C18H37C13Si) in a chemical vapor deposition process. Experimental results of condensation patterns and the corresponding predictions of numerical simulation for water vapor are compared. The prediction of the model is in fair agreement with the experimental data of condensation of water vapor. Average heat flux as a function of degree of subcooling for water and mercury are compared. Although, there is some discrepancy in the data obtained, major phenomena related to dropwise condensation underneath horizontal substrates are well-simulated by the mathematical model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bakulin NV, Ivanovskii MN, Sorokin VP, Subbotin VI, Chulkov BA (1967) Phase and diffusion resistance in the condensation of an alkali metal. J Atom Energy 22(5):413–415

    Google Scholar 

  • Bansal GD, Khandekar S, Muralidhar K (2009) Measurement of heat transfer during dropwise condensation of water on polyethylene. Nanoscale Microscale Thermophys Eng 13(3):184–201

    Article  Google Scholar 

  • Baojin Q, Li Z, Hong X, Yan S (2011) Experimental study on condensation heat transfer of steam on vertical titanium plates with different surface energies. Exp Thermal Fluid Sci 35:211–218

    Article  Google Scholar 

  • Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for super-hydrophobicity self-cleaning, low adhesion, and drag reduction. Progr Mater Sci 56:1–108

    Article  Google Scholar 

  • Bhutani G, Muralidhar K, Khandekar S (2013) Determination of apparent contact angle and shape of a static pendant drop on a physically textured inclined surface. Interfacial Phenom Heat Transf (accepted for publication)

    Google Scholar 

  • Blackman LCF, Dewar MJS, Hampson H (1957) An investigation of compounds promoting the dropwise condensation of steam. Appl Chem 7:160–157

    Article  Google Scholar 

  • Bonner R (2009) Condensation on surfaces with graded hydrophobicity. ASME Summer Heat Transfer Conference, San Francisco, USA

    Google Scholar 

  • Bonner-III RW (2010) Dropwise condensation life testing of self assembled monolayers. Proceedings of the International Heat Transfer Conference (IHTC14), Washington, DC, USA

    Google Scholar 

  • Boreyko JB, Chen CH (2009) Self-propelled dropwise condensate on superhydrophobic surfaces. Phys Rev Lett 103:184501–184504

    Article  Google Scholar 

  • Briscoe BJ, Galvin KP (1991b) The sliding of sessile and pendent droplets the critical condition. J Colloid Interface Sci 52:219–229

    Google Scholar 

  • Cha TG, Yi GW, Moon MW, Lee KR, Kim HY (2010) Nanoscale patterning of micro-textured surfaces to control superhydrophobic robustness. Langmuir 26(11):8319–8326

    Article  Google Scholar 

  • Chen CH, Cai Q, Tsai C, Chen CL (2007) Dropwise condensation on superhydrophobic surfaces with two-tier roughness. Appl Phys Lett 90:173108–173111

    Article  Google Scholar 

  • Chen L, Liang S, Yan R, Cheng Y, Huai X, Chen S (2009) N-octadecanethiol self-assembled monolayer coating with microscopic roughness for dropwise condensation of steam. J Thermal Sci 18(2):60–165

    Google Scholar 

  • Citakoglu E, Rose JW (1968a) Dropwise condensation some factors influencing the validity of heat-transfer measurements. Int J Heat Mass Transf 11:523–537

    Article  Google Scholar 

  • Citakoglu E, Rose JW (1968b) Dropwise condensation the effect of surface inclination. Int J Heat Mass Transf 12:645–451

    Article  Google Scholar 

  • Cras JJ, Rowe-Tait CA, Nivens DA, Ligler FS (1999) Comparison of chemical cleaning methods of glass in preparation for silanization. Biosens Bioelectron 14:683–688

    Article  Google Scholar 

  • Daniel S, Chaudhury MK, Chen JC (2001) Fast drop movements resulting from the phase-change on a gradient surface. Science 291:633–636

    Article  Google Scholar 

  • Das AK, Kilty HP, Marto PJ (2000) Dropwise condensation of steam on horizontal corrugated tubes using an organic self-asssembled monolayer coating. J Enhanced Heat Transf 7(2):109–123

    Google Scholar 

  • Dietz C, Rykaczewski K, Fedorov AG, Joshi Y (2010) Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation. Appl Phys Lett 97:033104–3

    Article  Google Scholar 

  • Erb RA (1965) Promoting permanent dropwise condensation. Ind Eng Chem 57:49–52

    Article  Google Scholar 

  • Erb RA (1973) Dropwise condensation on gold. Gold Bull 6:2

    Article  Google Scholar 

  • Erb RA, Thelen E (1965) Dropwise condensation on hydrophobic metal and metal-sulfide surfaces. 149th National meeting and Symposium of the American Chemical Society, Detroit, Michigan, USA

    Google Scholar 

  • Erb RA, Thelen E (1966) Dropwise condensation characteristics of permanent hydrophobic system. U. S. Department of Interior, R&D Report # 184. pp. 5–57

    Google Scholar 

  • Genzer J, Efimenko K (2000) Creating long-lived super hydrophobic polymer surface through mechanically assembled monolayer. Science 290:2130–2133

    Article  Google Scholar 

  • Graham C (1969) The limiting heat transfer mechanism of dropwise condensation. PhD thesis, Massachusetts Institute of Technology, USA

    Google Scholar 

  • Griffith P, Lee MS (1967) The effect of surface thermal properties and finish on dropwise condensation. Int J Heat Mass Transf 10:697–707

    Article  Google Scholar 

  • Grischke M, Trojan K, Dimigen H (1994) Deposition of low energy coating with dLC-like properties. Proceedings of 11th conference on high vacuum, interfaces and thin films. pp. 433–436

    Google Scholar 

  • Gu Y, Liao Q, Zhu X, Wang H (2005) Dropwise condensation heat transfer coefficient on the horizontal surface with gradient surface energy. J Eng Thermophys 26(5):820–822

    Google Scholar 

  • Hatamiya S, Tanaka H (1986) A study on the mechanism of dropwise condensation (1st Report, Measurement of Heat-Transfer Coefficient of Steam at Low Pressures). Trans JSME Ser B 52(476):1828–1833

    Article  Google Scholar 

  • Hsieh CT, Chen WY, Wu FL (2008) Fabrication and super-hydrophobicity of fluorinated carbon fabrics with micro/nano-scaled two-tier roughness. Carbon 46:1218–1224

    Article  Google Scholar 

  • Jessensky O, Müller F, Gösele U (2003) Self-organized formation of hexagonal pore arrays in anodic alumina. Appl Phys Lett 72(9):1173–1175

    Google Scholar 

  • Kim S, Kim KJ (2011) Dropwise condensation suitable for superhydrophobic surfaces. ASME J Heat Transf 133(8):0815021–0815028

    Google Scholar 

  • Koch G, Zhang DC, Leiertz A (1997) Condensation of steam on the surface of hard coated copper discs. Heat Mass Transf 32:149–297

    Article  Google Scholar 

  • Koch G, Zhang D, Leipertz A (1998) Study of plasma enhanced CVD coated material to promote dropwise condensation. Int J Heat Mass Transf 41(13):1899–1900

    Article  Google Scholar 

  • Lan Z, Ma XZ, Zhang Y, Zhou XD (2009) Theoretical study of dropwise condensation heat transfer: effect of the liquid-solid surface free energy difference. J Enhanc Heat Transf 16:61–71

    Article  Google Scholar 

  • Lara JR, Holtzapple MT (2011) Experimental investigation of dropwise condensation on hydrophobic heat exchangers. Part II: effect of coatings and surface geometry. Desalination 280:363–369

    Article  Google Scholar 

  • Lau KKS, Bico J, Teo KBK, Chowilla M, Amaratunga GAJ, Milne WI, McKinley GH, Gleason KK (2003) Superhydrophobic carbon nanotube forests. Nano Lett 3:1701–1705

    Article  Google Scholar 

  • Lawal A, Brown RA (1982) The stability of an inclined pendent drop. J Colloid Interface Sci 89:332–345

    Article  Google Scholar 

  • Le Fevre EJ, Rose JW (1965) An experimental study of heat transfer by dropwise condensation. Int J Heat Mass Transf 8:1117–1133

    Article  Google Scholar 

  • Le Fevre EJ, Rose JW (1966) A theory of heat transfer by dropwise condensation. Proc. 3rd international heat transfer conference, Chicago, vol. 2. pp. 362–375

    Google Scholar 

  • Le Fevre EJ, Rose JW (1964) Heat-transfer measurement during dropwise condensation of Steam. Int J Heat Mass Transf 7:272–273

    Article  Google Scholar 

  • Lee LY, Fang TH, Yang YM, Maa JR (1998) The enhancement of dropwise condensation by wettability modification of solid surface. Int Commun Heat Mass Transf 25(8):1095–1103

    Article  Google Scholar 

  • Leipertz A, Cho KH (2000) Dropwise condensation on ion implanted metallic surfaces. Proceedings of the third European thermal sciences conference. pp. 917–921

    Google Scholar 

  • Leipertz A, Fröba AP (2006) Improvement of condensation heat transfer by surface modification. Proceedings of the seventh ASME, heat and mass transfer conf., IIT Guwahati, India, K7. pp. k85–k99

    Google Scholar 

  • Leipertz A, Fröba AP (2008) Improvement of condensation heat transfer by surface modifications. Heat Transf Eng 29(4):343–356

    Article  Google Scholar 

  • Liao Q, Wang H, Zhu X, Li M (2006) Liquid droplet movement on horizontal surface with gradient surface energy. Sci Chin Ser E Technol Sci 49(6):733–741

    Article  Google Scholar 

  • Liu Y, Chen X, Xin JH (2006) Super-hydrophobic surfaces from a simple coating method: a bionic nanoengineering approach. Nanotechnology 17:3259–3263

    Article  Google Scholar 

  • Ma XH, Zhou XD, Lan Z, Li YM, Zhang Y (2008) Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation. Int J Heat Mass Transf 51:1728–1737

    Article  MATH  Google Scholar 

  • Ma X, Wang B (1999) Life time test of dropwise condensation on polymer-coated surfaces. Heat Transf Asian Res 28(7):551–558

    Google Scholar 

  • Ma X, Chen J, Xu D, Lin J, Ren C, Long Z (2002) Influence of processing conditions of polymer film on dropwise condensation heat transfer. Int J Heat Mass Transf 45:3405–3411

    Article  Google Scholar 

  • Ma X, Rose JW, Xu D, Lin J, Wang B (2000a) Advances in dropwise condensation heat transfer. Chin Res Chem Eng J 78:78–93

    Google Scholar 

  • Ma X, Tao B, Chen J, Xu D, Lin J (2000b) Dropwise condensation heat transfer of steam on a polytethefluoroethylene film. J Thermal Sci 10(3):247–253

    Article  Google Scholar 

  • Ma X, Wang S, Lan Z, Peng B, Ma HB, Cheng P (2012) Wetting mode evolution of steam dropwise condensation on superhydrophobic surface in the presence of non-condensable gas. ASME J Heat Transf 134:021501–021509

    Article  Google Scholar 

  • Majumdar A, Mezic I (1999) Instability of ultra-thin water film and the mechanism of droplet formation on hydrophobic surfaces. J Heat Transf 121:964–970

    Article  Google Scholar 

  • Marto PJ, Looney DJ, Rose JW (1986) Evaluation of organic coating for the promotion of dropwise condensation of steam. Int J Heat Mass Transf 29:1109–1117

    Article  Google Scholar 

  • McCarthy M, Enright R, Gerasopoulos K, Culver J, Ghodssi R, Wang EN (2010) Biomimetic superhydrophobic surfaces using viral nano templates for self-cleaning and drop-wise condensation. Proc. of the 2010 solid state sensor actuator and micro-system workshop, Hilton Head, SC, USA

    Google Scholar 

  • Miljkovic N, Enright R, Wang EN (2012) Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano 6:1776–1785

    Article  Google Scholar 

  • Miwa M, Nakajima A, Fujishima A, Kazuhito HK, Toshiya Watanabe T (2000) Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16:5754–5760

    Article  Google Scholar 

  • Mori K, Fujita N, Horie H, More S, Miyashita M, Matsuda M (1991) Heat transfer promotion of aluminum–brass cooling tube by surface treatment with triazinethiols. Langmuir 7:1161–1166

    Article  Google Scholar 

  • Nakajima A, Hashimoto K, Watanabe T (2001) Recent studies on super-hydrophobic films. Monatschefte Chem 132:31–41

    Article  Google Scholar 

  • Necmi S, Rose JW (1977) Heat-transfer measurements during dropwise condensation of mercury. Int J Heat Mass Transf 20:877–880

    Article  Google Scholar 

  • Neumann AW, Abdelmessih AH, Hameed A (1978) The role of contact angles and contact angles hysteresis in dropwise condensation heat transfer. Int J Heat Mass Transf 21:947–953

    Article  Google Scholar 

  • Niknejad J, Rose JW (1984) Comparisons between experiment and theory for dropwise Condensation. Int J Heat Mass Transf 20:2253–2257

    Article  Google Scholar 

  • Rausch MH, Fröba AP, Leipertz A (2007) Dropwise condensation on plasma-ion implanted aluminum surface. Int J Heat Mass Transf 51:1061–1070

    Article  Google Scholar 

  • Rausch MH, Leipertz A, Fröba AP (2010a) Dropwise condensation of steam on ion implanted titanium surfaces. Int J Heat Mass Transf 53:423–430

    Article  Google Scholar 

  • Rausch MH, Leipertz A, Fröba AP (2010b) On the mechanism of dropwise condensation on ion implanted metallic surface. ASME J Heat Transf 132:945031–945033

    Google Scholar 

  • Rose JW (1972) Dropwise condensation of mercury. Int J Heat Mass Transf 15:1431–1434

    Article  Google Scholar 

  • Rose JW (2004) Surface tension effects and enhancements of condensation heat transfer. Chem Eng Res Des 82:419–429

    Article  Google Scholar 

  • Rose J, Utaka Y, Tanasawa I (1999) Dropwise condensation. In: Kandlikar SG (ed.) Handbook of phase change: boling and condensation. Taylor and Francis, USA. pp. 581–594

    Google Scholar 

  • Rose JW (2002) Dropwise condensation: theory and experiments: a review. Proc Instit Mech Eng U S A 216:115–118

    Article  Google Scholar 

  • Sikarwar BS, Battoo NK, Khandekar S, Muralidhar K (2011) Dropwise condensation underneath chemically textured surfaces: simulation and experiments. ASME J Heat Transf 133(2):0215011–02150115

    Google Scholar 

  • Sommers AD, Jacobi AM (2006) Creating micro-scale surface topology to achieve anisotropic wettability on an aluminum surface. J Micromechan Micro Eng 16:1571–1578

    Article  Google Scholar 

  • Sommers AD, Jacobi AM (2008) Wetting phenomena on micro-grooved aluminum surfaces and modeling of the critical droplet size. J Colloid Interface Sci 328:402–411

    Article  Google Scholar 

  • Stephan K (1992) Heat transfer in condensation and boiling. Springer, Berlin. pp. 28–77

    Google Scholar 

  • Stylianou SA, Rose JW (1983) Drop-to-filmwise condensation transition: heat transfer measurements for ethandiol. Int J Heat Mass Transf 26(5):747–760

    Article  Google Scholar 

  • Stylianou SA, Rose JW (1980) Dropwise condensation on surface having different thermal conductivities. ASME J Heat Transf 102:477–482

    Article  Google Scholar 

  • Takeyama T, Shimizu S (1974) On the transition of dropwise-film condensation. Proc 5th Int Heat Transf Conf 3:274–278

    Google Scholar 

  • Tanasawa I, Utaka Y (1983) Measurement of condensation curves for dropwise condensation of steam at atmospheric pressure. J Heat Transf 1(05):633–638

    Article  Google Scholar 

  • Tanasawa I (1991) Advance in condensation heat transfer. In: Hartnett JP, Irvine TF, Cho IY (eds.) Advances in heat transfer, vol. 21. pp. 56–136

    Google Scholar 

  • Tanasawa I, Ochiai J, Utaka Y, Enya S (1976) Experimental study on dropwise condensation (Effect of departing drop size on heat-transfer coefficient). Trans JSME 42(361):2846–2853

    Article  Google Scholar 

  • Tanner DW, Pope D, Potter CJ, West D (1968) Heat transfer in dropwise condensation at low steam pressure in the absence of non-condensable gas. Int J Heat Mass Transf 11:181–190

    Article  Google Scholar 

  • Tsuruta T (1993) Constriction resistance in dropwise condensation. Proc. of the ASME engineering foundation conference on condensation and condenser design. pp. 109–170

    Google Scholar 

  • Utaka Y, Kubo R, Ishii K (1994) Heat transfer characteristics of condensation of capor on a lyophobic Surface. Proc 10th Int Heat TransfConf 3:401–406

    Google Scholar 

  • Utaka Y, Saito A, Ishikawa H, Yanagida H (1987) Transition from dropwise condensation to film condensation of propylene glycol ethylene glycol, and glycerol vapors. Proc 2nd ASME-1SME Thermal Eng Conf 4:377–384

    Google Scholar 

  • Vemuri S, Kim KJ, Wood BD, Govindaraju S, Bell TW (2006) Long term testing for dropwise condensation using self-assembled monolayer coating of n-octadecyl mercaptan. Appl Thermal Eng 26:421–429

    Article  Google Scholar 

  • Watson RGH, Birt DCP, Honour CW, Ash BW (1962) The promotion of dropwise condensation by montan wax I. Heat transfer measurements. J Appl Chem 12(12):539–546

    Article  Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–990

    Article  Google Scholar 

  • Wilmshurst R, Rose JW (1970) Dropwise condensation-further heat-transfer measurements. Proc 4th Int Heat Transf Conf 4:1–4

    Google Scholar 

  • Wilmshurst R, Rose JW (1974) Dropwise and filmwise condensation of aniline ethandiol, and nitrobenzene. Proc 5th Int Heat Transf Conf 3:269–273

    Google Scholar 

  • Zhang DC, Lin ZQ, Lin JF (1986) New materials for dropwise condensation. Proc 8th Int Heat Transf Conf 4:1677–1682

    Google Scholar 

  • Zhao H, Beysens D (1995) From droplet growth to film growth on a heterogeneous surface: condensation associated with a wettability gradient. Langmuir 11(2):627–634

    Article  Google Scholar 

  • Zhao Q, Burnside BM (1994) Dropwise condensation of steam on ion implanted condenser surfaces. Heat Recov Syst CHP 14:525–534

    Article  Google Scholar 

  • Zhao Q, Zhang DC, Lin JF (1991) Surface materials with dropwise condensation mode by ion implantation technology. Int J Heat Mass Transf 34:2833–2835

    Article  Google Scholar 

  • Zhao Q, Zhang DC, Lin JF, Wang GM (1996) Dropwise condensation on L-B film surface. Chem Eng Process 35:473–477

    Article  Google Scholar 

  • Zhao Q, Zhang DC, Zhu XB, Xu DQ, Lin ZQ, Lin JF (1990) Industrial application of dropwise condensation. Proc 9th Int Heat Transf Conf 4:391–394

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Khandekar, S., Muralidhar, K. (2014). Dropwise Condensation: Experiments. In: Dropwise Condensation on Inclined Textured Surfaces. SpringerBriefs in Applied Sciences and Technology(). Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8447-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8447-9_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8446-2

  • Online ISBN: 978-1-4614-8447-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics