Skip to main content

Detecting Noncoding RNA Expression: From Arrays to Next-Generation Sequencing

  • Chapter
  • First Online:
Non-coding RNAs and Cancer

Abstract

Detection and quantification of noncoding(nc) RNA species can present specific challenges as compared to mRNA. Among them, ncRNA sequences are generally less well annotated, can include extraordinarily small species such as miRNA or piRNA, can have repetitive sequences or have high GC content, or even have antisense expression. Despite this, many different traditional technologies have been adapted to measure ncRNAs and include those based on a priori knowledge of sequence such as probe detection (qRT-PCR) and hybridization (arrays), and those where such knowledge is not required (next-generation sequencing). A summary of these experimental techniques is reviewed in this chapter, including the available chemistries, throughput, starting material, and species interrogated. Subsequent focus is on the computational analysis for next-generation sequencing since this technology can not only detect and measure ncRNAs but more excitingly also lead to the discovery of new or isomeric forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin L, Lloyd RV. In situ hybridization: methods and applications. J Clin Lab Anal. 1997;11:2–9.

    Article  PubMed  CAS  Google Scholar 

  2. Kevil CG, Walsh L, Laroux FS, Kalogeris T, Grisham MB, Alexander JS. An improved, rapid Northern protocol. Biochem Biophys Res Commun. 1997;238:277–9.

    Article  PubMed  CAS  Google Scholar 

  3. VanGuilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques. 2008;44:619–26.

    Article  PubMed  CAS  Google Scholar 

  4. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270:467–70.

    Article  PubMed  CAS  Google Scholar 

  5. ten Bosch JR, Grody WW. Keeping up with the next generation: massively parallel sequencing in clinical diagnostics. J Mol Diagn. 2008;10:484–92.

    Article  PubMed  Google Scholar 

  6. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39:D152–7.

    Article  PubMed  CAS  Google Scholar 

  7. Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012;13:358–69.

    Article  PubMed  CAS  Google Scholar 

  8. Hammond SM. microRNA detection comes of age. Nat Methods. 2006;3:12–3.

    Article  PubMed  CAS  Google Scholar 

  9. Wark AW, Lee HJ, Corn RM. Multiplexed detection methods for profiling microRNA expression in biological samples. Angew Chem Int Ed Engl. 2008;47:644–52.

    Article  PubMed  CAS  Google Scholar 

  10. Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 2008;18:610–21.

    Article  PubMed  CAS  Google Scholar 

  11. Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS. lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res. 2011;39:D146–51.

    Article  PubMed  CAS  Google Scholar 

  12. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25:1915–27.

    Article  PubMed  CAS  Google Scholar 

  13. Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, et al. Ensembl 2011. Nucleic Acids Res. 2011;39:D800–6.

    Article  PubMed  CAS  Google Scholar 

  14. Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, Cline MS, Goldman M, Barber GP, Clawson H, Coelho A, et al. The UCSC Genome Browser database: update 2011. Nucleic Acids Res. 2011;39:D876–82.

    Article  PubMed  CAS  Google Scholar 

  15. Pang KC, Stephen S, Dinger ME, Engstrom PG, Lenhard B, Mattick JS. RNAdb 2.0–an expanded database of mammalian non-coding RNAs. Nucleic Acids Res. 2007;35:D178–82.

    Article  PubMed  CAS  Google Scholar 

  16. Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2007;35:D61–5.

    Article  PubMed  CAS  Google Scholar 

  17. Kapranov P, Willingham AT, Gingeras TR. Genome-wide transcription and the implications for genomic organization. Nat Rev Genet. 2007;8:413–23.

    Article  PubMed  CAS  Google Scholar 

  18. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447:799–816.

    Article  PubMed  CAS  Google Scholar 

  19. Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5′––3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A. 1991;88:7276–80.

    Article  PubMed  CAS  Google Scholar 

  20. Zipper H, Brunner H, Bernhagen J, Vitzthum F. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res. 2004;32:e103.

    Article  PubMed  Google Scholar 

  21. Sand M, Skrygan M, Sand D, Georgas D, Gambichler T, Hahn SA, Altmeyer P, Bechara FG. Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res. 2013;351:85–98.

    Article  PubMed  CAS  Google Scholar 

  22. Schembri F, Sridhar S, Perdomo C, Gustafson AM, Zhang X, Ergun A, Lu J, Liu G, Bowers J, Vaziri C, et al. MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium. Proc Natl Acad Sci U S A. 2009;106:2319–24.

    Article  PubMed  CAS  Google Scholar 

  23. Ho CY, Bar E, Giannini C, Marchionni L, Karajannis MA, Zagzag D, Gutmann DH, Eberhart CG, Rodriguez FJ. MicroRNA profiling in pediatric pilocytic astrocytoma reveals biologically relevant targets, including PBX3, NFIB, and METAP2. Neuro Oncol. 2013;15:69–82.

    Article  PubMed  CAS  Google Scholar 

  24. Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques. 2005;39:519–25.

    Article  PubMed  CAS  Google Scholar 

  25. Kaur H, Arora A, Wengel J, Maiti S. Thermodynamic, counterion and hydration effects for the incorporation of locked nucleic acid (LNA) nucleotides in duplex. Nucleic Acids Symp Ser (Oxf). 2008;52:425–426.

    Google Scholar 

  26. Owczarzy R, You Y, Groth CL, Tataurov AV. Stability and mismatch discrimination of locked nucleic acid-DNA duplexes. Biochemistry. 2011;50:9352–67.

    Article  PubMed  CAS  Google Scholar 

  27. Jensen SG, Lamy P, Rasmussen MH, Ostenfeld MS, Dyrskjot L, Orntoft TF, Andersen CL. Evaluation of two commercial global miRNA expression profiling platforms for detection of less abundant miRNAs. BMC Genomics. 2011;12:435.

    Article  PubMed  CAS  Google Scholar 

  28. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33:e179.

    Article  PubMed  Google Scholar 

  29. Clark MB, Johnston RL, Inostroza-Ponta M, Fox AH, Fortini E, Moscato P, Dinger ME, Mattick JS. Genome-wide analysis of long noncoding RNA stability. Genome Res. 2012;22:885–98.

    Article  PubMed  CAS  Google Scholar 

  30. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129:1311–23.

    Article  PubMed  CAS  Google Scholar 

  31. Yin JQ, Zhao RC, Morris KV. Profiling microRNA expression with microarrays. Trends Biotechnol. 2008;26:70–6.

    Article  PubMed  CAS  Google Scholar 

  32. Li W, Ruan K. MicroRNA detection by microarray. Anal Bioanal Chem. 2009;394:1117–24.

    Article  PubMed  CAS  Google Scholar 

  33. Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, Bertone P, Caldas C. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA. 2010;16:991–1006.

    Article  PubMed  CAS  Google Scholar 

  34. Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik AE, Hentze MW, Muckenthaler MU. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA. 2006;12:913–20.

    Article  PubMed  CAS  Google Scholar 

  35. Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, Fell HP, Ferree S, George RD, Grogan T, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol. 2008;26:317–25.

    Article  PubMed  CAS  Google Scholar 

  36. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74:5463–7.

    Article  PubMed  CAS  Google Scholar 

  37. Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, Heiner C, Kent SB, Hood LE. Fluorescence detection in automated DNA sequence analysis. Nature. 1986;321:674–9.

    Article  PubMed  CAS  Google Scholar 

  38. Luckey JA, Drossman H, Kostichka AJ, Mead DA, D’Cunha J, Norris TB, Smith LM. High speed DNA sequencing by capillary electrophoresis. Nucleic Acids Res. 1990;18:4417–21.

    Article  PubMed  CAS  Google Scholar 

  39. Moorthie S, Mattocks CJ, Wright CF. Review of massively parallel DNA sequencing technologies. Hugo J. 2011;5:1–12.

    Article  PubMed  Google Scholar 

  40. Bentley G, Higuchi R, Hoglund B, Goodridge D, Sayer D, Trachtenberg EA, Erlich HA. High-resolution, high-throughput HLA genotyping by next-generation sequencing. Tissue Antigens. 2009;74:393–403.

    Article  PubMed  CAS  Google Scholar 

  41. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376–80.

    PubMed  CAS  Google Scholar 

  42. Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM. Accurate multiplex polony sequencing of an evolved bacterial genome. Science. 2005;309:1728–32.

    Article  PubMed  CAS  Google Scholar 

  43. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475:348–52.

    Article  PubMed  CAS  Google Scholar 

  44. Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I, Causey M, Colonell J, Dimeo J, Efcavitch JW, et al. Single-molecule DNA sequencing of a viral genome. Science. 2008;320:106–9.

    Article  PubMed  CAS  Google Scholar 

  45. Bowers J, Mitchell J, Beer E, Buzby PR, Causey M, Efcavitch JW, Jarosz M, Krzymanska-Olejnik E, Kung L, Lipson D, et al. Virtual terminator nucleotides for next-generation DNA sequencing. Nat Methods. 2009;6:593–5.

    Article  PubMed  CAS  Google Scholar 

  46. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–8.

    Article  PubMed  CAS  Google Scholar 

  47. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.

    Article  PubMed  CAS  Google Scholar 

  48. Kent WJ. BLAT–the BLAST-like alignment tool. Genome Res. 2002;12:656–64.

    PubMed  CAS  Google Scholar 

  49. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:D140–4.

    Article  PubMed  CAS  Google Scholar 

  50. Friedlander MR, Chen W, Adamidi C, Masskola J, Einspanier R, Knespel S, et al. Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol. 2008;4:407–15.

    Article  Google Scholar 

  51. Hackenberg M, Sturm M, Langenberger D, Falcon-Perez J, Arasay A. miRanalzyer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucl Acids Res. 2009;37:68–76.

    Article  Google Scholar 

  52. Huang P, Lui Y, Lee C, Lin W, Gan R, Lyu P, et al. DSAP: deep-sequencing small RNA analysis pipeline. Nucl Acids Res. 2010;38:385–91.

    Article  Google Scholar 

  53. Mathelier A, Carbone A. MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics. 2010;18:2226–34.

    Article  Google Scholar 

  54. Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science. 2008;322:750–6.

    Article  PubMed  CAS  Google Scholar 

  55. Raasch P, Schmitz U, Patenge N, Vera J, Kreikemeyer B, Wolkenhauer O. Non-coding RNA detection methods combined to improve usability, reproduction and precision. BMC Bioinforma. 2010;11:1–12.

    Article  Google Scholar 

  56. Rivas E, Eddy S. Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinforma. 2001;2:1–19.

    Article  Google Scholar 

  57. Washietl S, Hofacker I. Identifying structural noncoding RNA using RNAz. Curr Protoc Bioinformatics. 2007;10:1–12.

    Google Scholar 

  58. Uzilov A, Keegan J, Matthews D. Detection of non-coding RNAs on the basis of predicted secondary structure formation free energy change. BMC Bioinforma. 2006;7:1–30.

    Article  Google Scholar 

  59. Guttman M, Garber M, Levin J, Donaghey J, Robinson J, Adivonis X, et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol. 2008;28:503–10.

    Article  Google Scholar 

  60. Roberts A, Pimentel H, Trapnell C, Pachter L. Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics. 2011;27:2325–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catalina Perdomo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Perdomo, C., Campbell, J., Schembri, F. (2014). Detecting Noncoding RNA Expression: From Arrays to Next-Generation Sequencing. In: Fabbri, M. (eds) Non-coding RNAs and Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8444-8_3

Download citation

Publish with us

Policies and ethics