Skip to main content

Biogenesis and Physiology of MicroRNAs

  • Chapter
  • First Online:
Non-coding RNAs and Cancer

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs 17–25 nucleotides long that control gene expression by promoting degradation or repressing translation of target mRNAs. Since each miRNA regulates the expression of hundreds of target mRNAs, miRNAs can be seen as master-coordinators, efficiently regulating fundamental cellular processes such as proliferation, apoptosis, and development. MiRNAs are synthesized in the cell through a multistep coordinated process that starts in the nucleus and proceeds to the cytoplasm culminating with the production of the biological active form, the miRNA. This maturation process consists of a series of biochemical steps that convert the primary miRNA transcript into an intermediate precursor miRNA hairpin and culminates with the formation of the mature miRNA. The spatiotemporal control of miRNA abundance is made possible, in part, by the regulation of its biosynthesis pathway, where alterations can lead to global miRNA deregulation. Since miRNAs are involved in a broad range of developmental and physiological processes their deregulation appears to play a fundamental role in the onset, progression, and dissemination of many cancers as well as in many other human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Google Scholar 

  2. Molnar A et al. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature. 2007;447(7148):1126–9.

    Google Scholar 

  3. Zhao T et al. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev. 2007;21(10):1190–203.

    Google Scholar 

  4. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Google Scholar 

  5. Reinhart BJ et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6.

    Google Scholar 

  6. Lagos-Quintana M et al. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8.

    Google Scholar 

  7. Abbott AL et al. The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell. 2005;9(3):403–14.

    Google Scholar 

  8. Miska EA et al. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet. 2007;3(12):e215.

    Google Scholar 

  9. Lau NC et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294(5543):858–62.

    Google Scholar 

  10. Calin GA et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999–3004.

    Google Scholar 

  11. He L et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435(7043):828–33.

    Google Scholar 

  12. Rodriguez A et al. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004;14(10A):1902–10.

    Google Scholar 

  13. Smalheiser NR, Torvik VI. Mammalian microRNAs derived from genomic repeats. Trends Genet. 2005;21(6):322–6.

    Google Scholar 

  14. Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005;11(3):241–7.

    Google Scholar 

  15. Lee Y et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9.

    Google Scholar 

  16. Lund E et al. Nuclear export of microRNA precursors. Science. 2004;303(5654):95–8.

    Google Scholar 

  17. Yi R et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011–6.

    Google Scholar 

  18. Ozsolak F et al. Chromatin structure analyses identify miRNA promoters. Genes Dev. 2008;22(22):3172–83.

    Google Scholar 

  19. Corcoran DL et al. Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One. 2009;4(4):e5279.

    Google Scholar 

  20. Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55.

    Google Scholar 

  21. Kim W et al. Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis. Cell Res. 2009;19(7):899–909.

    Google Scholar 

  22. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10(12):1957–66.

    Google Scholar 

  23. Lee Y et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60.

    Google Scholar 

  24. Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13(12):1097–101.

    Google Scholar 

  25. Denli AM et al. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432(7014):231–5.

    Google Scholar 

  26. Gregory RI et al. The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432(7014):235–40.

    Google Scholar 

  27. Han J et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006;125(5):887–901.

    Google Scholar 

  28. Basyuk E et al. Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res. 2003;31(22):6593–7.

    Google Scholar 

  29. Conrad C, Rauhut R. Ribonuclease III: new sense from nuisance. Int J Biochem Cell Biol. 2002;34(2):116–29.

    Google Scholar 

  30. Shiohama A et al. Molecular cloning and expression analysis of a novel gene DGCR8 located in the DiGeorge syndrome chromosomal region. Biochem Biophys Res Commun. 2003;304(1):184–90.

    Google Scholar 

  31. Okada C et al. A high-resolution structure of the pre-microRNA nuclear export machinery. Science. 2009;326(5957):1275–9.

    Google Scholar 

  32. Berezikov E et al. Mammalian mirtron genes. Mol Cell. 2007;28(2):328–36.

    Google Scholar 

  33. Okamura K et al. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell. 2007;130(1):89–100.

    Google Scholar 

  34. Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha processing. Nature. 2007;448(7149):83–6.

    Google Scholar 

  35. Babiarz JE et al. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev. 2008;22(20):2773–85.

    Google Scholar 

  36. Ender C et al. A human snoRNA with microRNA-like functions. Mol Cell. 2008;32(4):519–28.

    Google Scholar 

  37. Saraiya AA, Wang CC. snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog. 2008;4(11):e1000224.

    Google Scholar 

  38. Cole C et al. Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA. 2009;15(12):2147–60.

    Google Scholar 

  39. Miyoshi K et al. Molecular mechanisms that funnel RNA precursors into endogenous small-interfering RNA and microRNA biogenesis pathways in Drosophila. RNA. 2010;16(3):506–15.

    Google Scholar 

  40. Kim VN. MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends Cell Biol. 2004;14(4):156–9.

    Google Scholar 

  41. Murchison EP, Hannon GJ. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol. 2004;16(3):223–9.

    Google Scholar 

  42. Gwizdek C et al. Terminal minihelix, a novel RNA motif that directs polymerase III transcripts to the cell cytoplasm. Terminal minihelix and RNA export. J Biol Chem. 2001;276(28):25910–8.

    Google Scholar 

  43. Melo SA et al. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell. 2010;18(4):303–15.

    Google Scholar 

  44. Bernstein E et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409(6818):363–6.

    Google Scholar 

  45. Grishok A et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell. 2001;106(1):23–34.

    Google Scholar 

  46. Hutvagner G et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293(5531):834–8.

    Google Scholar 

  47. Ketting RF et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 2001;15(20):2654–9.

    Google Scholar 

  48. Knight SW, Bass BL. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science. 2001;293(5538):2269–71.

    Google Scholar 

  49. Filipowicz W. RNAi: the nuts and bolts of the RISC machine. Cell. 2005;122(1):17–20.

    Google Scholar 

  50. Zhang H et al. Single processing center models for human Dicer and bacterial RNase III. Cell. 2004;118(1):57–68.

    Google Scholar 

  51. Salzman DW, Shubert-Coleman J, Furneaux H. P68 RNA helicase unwinds the human let-7 microRNA precursor duplex and is required for let-7-directed silencing of gene expression. J Biol Chem. 2007;282(45):32773–9.

    Google Scholar 

  52. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115(2):209–16.

    Google Scholar 

  53. Schwarz DS et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003;115(2):199–208.

    Google Scholar 

  54. Melo SA et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet. 2009;41(3):365–70.

    Google Scholar 

  55. Chendrimada TP et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436(7051):740–4.

    Google Scholar 

  56. Haase AD et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep. 2005;6(10):961–7.

    Google Scholar 

  57. Rossi JJ. RNAi and the P-body connection. Nat Cell Biol. 2005;7(7):643–4.

    Google Scholar 

  58. Daniels SM et al. Characterization of the TRBP domain required for dicer interaction and function in RNA interference. BMC Mol Biol. 2009;10:38.

    Google Scholar 

  59. Ma E et al. Autoinhibition of human dicer by its internal helicase domain. J Mol Biol. 2008;380(1):237–43.

    Google Scholar 

  60. Gregory RI et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123(4):631–40.

    Google Scholar 

  61. MacRae IJ et al. In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci U S A. 2008;105(2):512–7.

    Google Scholar 

  62. Matranga C et al. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell. 2005;123(4):607–20.

    Google Scholar 

  63. Cheloufi S et al. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature. 2010;465(7298):584–9.

    Google Scholar 

  64. Cifuentes D et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science. 2010;328(5986):1694–8.

    Google Scholar 

  65. Siolas D et al. Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol. 2005;23(2):227–31.

    Google Scholar 

  66. Griffiths-Jones S et al. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36(Database issue):D154–8.

    Google Scholar 

  67. Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci U S A. 2007;104(23):9667–72.

    Google Scholar 

  68. Forman JJ, Legesse-Miller A, Coller HA. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A. 2008;105(39):14879–84.

    Google Scholar 

  69. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Google Scholar 

  70. Rigoutsos I. New tricks for animal microRNAS: targeting of amino acid coding regions at conserved and nonconserved sites. Cancer Res. 2009;69(8):3245–8.

    Google Scholar 

  71. Jin P, Alisch RS, Warren ST. RNA and microRNAs in fragile X mental retardation. Nat Cell Biol. 2004;6(11):1048–53.

    Google Scholar 

  72. Wulczyn FG et al. Post-transcriptional regulation of the let-7 microRNA during neural cell specification. FASEB J. 2007;21(2):415–26.

    Google Scholar 

  73. Jakymiw A et al. Disruption of GW bodies impairs mammalian RNA interference. Nat Cell Biol. 2005;7(12):1267–74.

    Google Scholar 

  74. Liu J et al. A role for the P-body component GW182 in microRNA function. Nat Cell Biol. 2005;7(12):1261–6.

    Google Scholar 

  75. Chu CY, Rana TM. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol. 2006;4(7):e210.

    Google Scholar 

  76. Eulalio A et al. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev. 2007;21(20):2558–70.

    Google Scholar 

  77. Landgraf P et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14.

    Google Scholar 

  78. Jiang Q et al. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009;37(Database issue):D98–104.

    Google Scholar 

  79. Diederichs S, Haber DA. Sequence variations of microRNAs in human cancer: alterations in predicted secondary structure do not affect processing. Cancer Res. 2006;66(12):6097–104.

    Google Scholar 

  80. Yanaihara N et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9(3):189–98.

    Google Scholar 

  81. Sampson VB et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 2007;67(20):9762–70.

    Google Scholar 

  82. Raver-Shapira N et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007;26(5):731–43.

    Google Scholar 

  83. He L et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447(7148):1130–4.

    Google Scholar 

  84. Davis BN et al. Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. J Biol Chem. 2009;284(6):3728–38.

    Google Scholar 

  85. Chang TC et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet. 2008;40(1):43–50.

    Google Scholar 

  86. Garzon R et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci U S A. 2006;103(13):5078–83.

    Google Scholar 

  87. Chang TC et al. Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc Natl Acad Sci U S A. 2009;106(9):3384–9.

    Google Scholar 

  88. Chan MC et al. Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression. EMBO J. 2010;29(3):559–73.

    Google Scholar 

  89. Kato M et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A. 2007;104(9):3432–7.

    Google Scholar 

  90. Vo N et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A. 2005;102(45):16426–31.

    Google Scholar 

  91. Lujambio A et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 2007;67(4):1424–9.

    Google Scholar 

  92. Lujambio A et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A. 2008;105(36):13556–61.

    Google Scholar 

  93. Davalos V et al. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene. 2012;31(16):2062–74.

    Google Scholar 

  94. Scott GK et al. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 2006;66(3):1277–81.

    Google Scholar 

  95. Han J et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell. 2009;136(1):75–84.

    Google Scholar 

  96. Triboulet R et al. Post-transcriptional control of DGCR8 expression by the Microprocessor. RNA. 2009;15(6):1005–11.

    Google Scholar 

  97. Davis BN et al. SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008;454(7200):56–61.

    Google Scholar 

  98. Kawai S, Amano A. BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. J Cell Biol. 2012;197(2):201–8.

    Google Scholar 

  99. Paroo Z et al. Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell. 2009;139(1):112–22.

    Google Scholar 

  100. Graziano F et al. Genetic modulation of the Let-7 microRNA binding to KRAS 3′-untranslated region and survival of metastatic colorectal cancer patients treated with salvage cetuximab-irinotecan. Pharmacogenomics J. 2010;10(5):458–64.

    Google Scholar 

  101. Lehrbach NJ et al. LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nat Struct Mol Biol. 2009;16(10):1016–20.

    Google Scholar 

  102. Hagan JP, Piskounova E, Gregory RI. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol. 2009;16(10):1021–5.

    Google Scholar 

  103. Heo I et al. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell. 2008;32(2):276–84.

    Google Scholar 

  104. Heo I et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell. 2009;138(4):696–708.

    Google Scholar 

  105. Jones MR et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol. 2009;11(9):1157–63.

    Google Scholar 

  106. Kedde M et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell. 2007;131(7):1273–86.

    Google Scholar 

  107. Leveille N et al. Selective inhibition of microRNA accessibility by RBM38 is required for p53 activity. Nat Commun. 2011;2:513.

    Google Scholar 

  108. Wulff BE, Nishikura K. Modulation of microRNA expression and function by ADARs. Curr Top Microbiol Immunol. 2012;353:91–109.

    Google Scholar 

  109. Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol. 2008;9(3):219–30.

    Google Scholar 

  110. Poy MN et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432(7014):226–30.

    Google Scholar 

  111. Jopling CL et al. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005;309(5740):1577–81.

    Google Scholar 

  112. Greco SJ, Rameshwar P. MicroRNAs regulate synthesis of the neurotransmitter substance P in human mesenchymal stem cell-derived neuronal cells. Proc Natl Acad Sci U S A. 2007;104(39):15484–9.

    Google Scholar 

  113. Gantier MP, Sadler AJ, Williams BR. Fine-tuning of the innate immune response by microRNAs. Immunol Cell Biol. 2007;85(6):458–62.

    Google Scholar 

  114. Brennecke J et al. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113(1):25–36.

    Google Scholar 

  115. Tay Y et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008;455(7216):1124–8.

    Google Scholar 

  116. Hatfield SD et al. Stem cell division is regulated by the microRNA pathway. Nature. 2005;435(7044):974–8.

    Google Scholar 

  117. Hornstein E et al. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature. 2005;438(7068):671–4.

    Google Scholar 

  118. Schratt GM et al. A brain-specific microRNA regulates dendritic spine development. Nature. 2006;439(7074):283–9.

    Google Scholar 

  119. Kwon C et al. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci U S A. 2005;102(52):18986–91.

    Google Scholar 

  120. Rodriguez A et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;316(5824):608–11.

    Google Scholar 

  121. Xiao C et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell. 2007;131(1):146–59.

    Google Scholar 

  122. Hebert SS et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A. 2008;105(17):6415–20.

    Google Scholar 

  123. Kim J et al. A MicroRNA feedback circuit in midbrain dopamine neurons. Science. 2007;317(5842):1220–4.

    Google Scholar 

  124. Care A et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613–8.

    Google Scholar 

  125. Mencia A et al. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet. 2009;41(5):609–13.

    Google Scholar 

  126. Plasterk RH. Micro RNAs in animal development. Cell. 2006;124(5):877–81.

    Google Scholar 

  127. Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way. Cell. 2009;136(4):586–91.

    Google Scholar 

  128. Koralov SB et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell. 2008;132(5):860–74.

    Google Scholar 

  129. Esquela-Kerscher A et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle. 2008;7(6):759–64.

    Google Scholar 

  130. Kumar MS et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A. 2008;105(10):3903–8.

    Google Scholar 

  131. Newman MA, Thomson JM, Hammond SM. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA. 2008;14(8):1539–49.

    Google Scholar 

  132. Viswanathan SR, Daley GQ, Gregory RI. Selective blockade of microRNA processing by Lin28. Science. 2008;320(5872):97–100.

    Google Scholar 

  133. Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science. 2007;315(5818):1576–9.

    Google Scholar 

  134. Voorhoeve PM et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell. 2006;124(6):1169–81.

    Google Scholar 

  135. Lu J et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.

    Google Scholar 

  136. Thomson JM et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 2006;20(16):2202–7.

    Google Scholar 

  137. Kumar MS et al. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39(5):673–7.

    Google Scholar 

  138. Kim MS et al. Somatic mutations and losses of expression of microRNA regulation-related genes AGO2 and TNRC6A in gastric and colorectal cancers. J Pathol. 2010;221(2):139–46.

    Google Scholar 

  139. Heravi-Moussavi A et al. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N Engl J Med. 2012;366(3):234–42.

    Google Scholar 

  140. Kumar MS et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev. 2009;23(23):2700–4.

    Google Scholar 

  141. Pasquinelli AE et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408(6808):86–9.

    Google Scholar 

Download references

Acknowledgment

We would like to show our special thanks to Dr. Nuno Barros for the design of the figures in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia A. Melo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Melo, C.A., Melo, S.A. (2014). Biogenesis and Physiology of MicroRNAs. In: Fabbri, M. (eds) Non-coding RNAs and Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8444-8_2

Download citation

Publish with us

Policies and ethics