Advertisement

Mutational Activation of KRAS and BRAF in Colorectal Cancer

  • Katherine H. Pedone
  • Jennifer L. Sells
  • Channing J. Der
Chapter

Abstract

The failure of farnesyltransferase inhibitors to show antitumor activity against KRAS-mutant malignancies diminished enthusiasm for efforts to develop anti-Ras inhibitors for cancer treatment. However, two recent developments have rekindled interest in these endeavors. First, genome-wide exome sequencing verified that mutational activation of the KRAS gene is the most prevalent oncogene mutation in colorectal cancer (CRC). Second, a major step toward the application of personalized medicine for CRC was taken when mutant KRAS was established as a prognostic marker for resistance to epidermal growth factor receptor monoclonal antibody therapy. Thus, there is renewed and considerable interest in understanding the role of KRAS mutation in CRC progression and growth and in developing pharmacologic approaches for blocking aberrant K-Ras protein function for CRC treatment. Since the K-Ras protein itself is considered “undruggable,” current strategies to develop anti-K-Ras inhibitors have focused on antagonists of K-Ras downstream effector signaling. The frequent mutational activation of BRAF, which is mutually with KRAS activation, suggests that the encoded B-Raf serine/threonine kinase and activation of the ERK mitogen-activated protein kinase cascade is a key driver of mutant K-Ras-dependent CRC growth. In this review, we summarize the importance of mutant K-Ras and B-Raf in CRC growth and current efforts in targeting the Raf-MEK-ERK cascade for CRC treatment.

Keywords

Akt GTPase Epidermal growth factor receptor ERK MEK Mitogen-activated protein kinase Phosphatidylinositol 3-kinase Raf 

References

  1. Ahearn IM, Haigis K, Bar-Sagi D et al (2011) Regulating the regulator: post-translational modification of RAS. Nat Rev Mol Cell Biol 13(1):39–51. doi: 10.1038/nrm3255 PubMedCrossRefGoogle Scholar
  2. Allegra CJ, Jessup JM, Somerfield MR et al (2009) American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 27(12):2091–2096PubMedCrossRefGoogle Scholar
  3. Amado RG, Wolf M, Peeters M et al (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26(10):1626–1634. doi: 10.1200/JCO.2007.14.7116 PubMedCrossRefGoogle Scholar
  4. Andreyev HJ, Norman AR, Cunningham D et al (2001) Kirsten ras mutations in patients with colorectal cancer: the ‘RASCAL II’ study. Br J Cancer 85(5):692–696PubMedCrossRefGoogle Scholar
  5. Babij C, Zhang Y, Kurzeja RJ et al (2011) STK33 kinase activity is nonessential in KRAS-dependent cancer cells. Cancer Res 71(17):5818–5826PubMedCrossRefGoogle Scholar
  6. Balmanno K, Chell SD, Gillings AS et al (2009) Intrinsic resistance to the MEK1/2 inhibitor AZD6244 (ARRY-142886) is associated with weak ERK1/2 signalling and/or strong PI3K signalling in colorectal cancer cell lines. Int J Cancer 125(10):2332–2341PubMedCrossRefGoogle Scholar
  7. Bandyopadhyay S, Chiang CY, Srivastava J et al (2010) A human MAP kinase interactome. Nat Methods 7(10):801–805PubMedCrossRefGoogle Scholar
  8. Barbie DA, Tamayo P, Boehm JS et al (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462(7269):108–112PubMedCrossRefGoogle Scholar
  9. Bergo MO, Ambroziak P, Gregory C et al (2002) Absence of the CAAX endoprotease Rce1: effects on cell growth and transformation. Mol Cell Biol 22(1):171–181PubMedCrossRefGoogle Scholar
  10. Bergo MO, Gavino BJ, Hong C et al (2004) Inactivation of Icmt inhibits transformation by oncogenic K-Ras and B-Raf. J Clin Invest 113(4):539–550. doi: 10.1172/JCI18829 PubMedGoogle Scholar
  11. Bermudez O, Pages G, Gimond C (2010) The dual-specificity MAP kinase phosphatases: critical roles in development and cancer. Am J Physiol Cell Physiol 299(2):C189–C202. doi: 10.1152/ajpcell.00347.2009 PubMedCrossRefGoogle Scholar
  12. Berndt N, Hamilton AD, Sebti SM (2011) Targeting protein prenylation for cancer therapy. Nat Rev Cancer 11(11):775–791. doi: 10.1038/nrc3151 PubMedCrossRefGoogle Scholar
  13. Bivona TG, Quatela SE, Bodemann BO et al (2006) PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol Cell 21(4):481–493. doi: 10.1016/j.molcel.2006.01.012 PubMedCrossRefGoogle Scholar
  14. Blum R, Cox AD, Kloog Y (2008) Inhibitors of chronically active ras: potential for treatment of human malignancies. Recent Pat Anticancer Drug Discov 3(1):31–47PubMedCrossRefGoogle Scholar
  15. Bodemann BO, White MA (2008) Ral GTPases and cancer: linchpin support of the tumorigenic platform. Nat Rev Cancer 8(2):133–140. doi: 10.1038/nrc2296 PubMedCrossRefGoogle Scholar
  16. Bos JL, Fearon ER, Hamilton SR et al (1987) Prevalence of ras gene mutations in human colorectal cancers. Nature 327(6120):293–297PubMedCrossRefGoogle Scholar
  17. Brown MD, Sacks DB (2009) Protein scaffolds in MAP kinase signalling. Cell Signal 21(4):462–469. doi: 10.1016/j.cellsig.2008.11.013 PubMedCrossRefGoogle Scholar
  18. Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407):330–337. doi: 10.1038/nature11252 CrossRefGoogle Scholar
  19. Cejas P, Lopez-Gomez M, Aguayo C et al (2009) KRAS mutations in primary colorectal cancer tumors and related metastases: a potential role in prediction of lung metastasis. PLoS One 4(12):e8199PubMedCrossRefGoogle Scholar
  20. Chan TL, Zhao W, Leung SY et al (2003) BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res 63(16):4878–4881PubMedGoogle Scholar
  21. Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516PubMedCrossRefGoogle Scholar
  22. Corcoran RB, Ebi H, Turke AB et al (2012) EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov 2(3):227–235. doi: 10.1158/2159-8290.CD-11-0341 PubMedCrossRefGoogle Scholar
  23. Cox AD, Der CJ (2010) Ras history: the saga continues. Small GTPases 1(1):2–27PubMedCrossRefGoogle Scholar
  24. Cunningham D, Humblet Y, Siena S et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351(4):337–345. doi: 10.1056/NEJMoa033025 PubMedCrossRefGoogle Scholar
  25. Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954PubMedCrossRefGoogle Scholar
  26. Davies BR, Logie A, McKay JS et al (2007) AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol Cancer Ther 6(8):2209–2219PubMedCrossRefGoogle Scholar
  27. de la Vega M, Burrows JF, Johnston JA (2011) Ubiquitination: added complexity in Ras and Rho family GTPase function. Small GTPases 2(4):192–201. doi: 10.4161/sgtp.2.4.16707 PubMedCrossRefGoogle Scholar
  28. De Roock W, Fieuws S, Biesmans B et al (2009, Abstract 289) DUSP expression as a predictor of outcome after cetuximab treatment in Kras wild type and mutant colorectal tumors. Gastrointestinal cancers symposium of the American Society of Clinical Oncology, San Francisco, 22–24 Jan 2009Google Scholar
  29. De Roock W, Claes B, Bernasconi D et al (2010a) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11(8):753–762PubMedCrossRefGoogle Scholar
  30. De Roock W, Claes B, Bernasconi D et al (2010b) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11(8):753–762. doi: 10.1016/S1470-2045(10)70130-3 PubMedCrossRefGoogle Scholar
  31. De Roock W, Jonker DJ, Di Nicolantonio F et al (2010c) Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA 304(16):1812–1820PubMedCrossRefGoogle Scholar
  32. De Roock W, De Vriendt V, Normanno N et al (2011) KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol 12(6):594–603PubMedCrossRefGoogle Scholar
  33. Di Nicolantonio F, Martini M, Molinari F et al (2008a) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26(35):5705–5712PubMedCrossRefGoogle Scholar
  34. Di Nicolantonio F, Martini M, Molinari F et al (2008b) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26(35):5705–5712. doi: 10.1200/JCO.2008.18.0786 PubMedCrossRefGoogle Scholar
  35. Dienstmann R, Vilar E, Tabernero J (2011) Molecular predictors of response to chemotherapy in colorectal cancer. Cancer J 17(2):114–126. doi: 10.1097/PPO.0b013e318212f844 PubMedCrossRefGoogle Scholar
  36. Dienstmann R, Serpico D, Rodon J et al (2012) Molecular profiling of patients with colorectal cancer and matched targeted therapy in phase I clinical trials. Mol Cancer Ther 11(9):2062–2071. doi: 10.1158/1535-7163.MCT-12-0290 PubMedCrossRefGoogle Scholar
  37. Douillard JY, Cunningham D, Roth AD et al (2000) Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 355(9209):1041–1047PubMedCrossRefGoogle Scholar
  38. Ebi H, Corcoran RB, Singh A et al (2011) Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers. J Clin Invest 121(11):4311–4321. doi: 10.1172/JCI57909 PubMedCrossRefGoogle Scholar
  39. Edkins S, O’Meara S, Parker A et al (2006) Recurrent KRAS codon 146 mutations in human colorectal cancer. Cancer Biol Ther 5(8):928–932PubMedCrossRefGoogle Scholar
  40. Engelman JA, Chen L, Tan X et al (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14(12):1351–1356PubMedCrossRefGoogle Scholar
  41. Esteban LM, Vicario-Abejon C, Fernandez-Salguero P et al (2001) Targeted genomic disruption of H-ras and N-ras, individually or in combination, reveals the dispensability of both loci for mouse growth and development. Mol Cell Biol 21(5):1444–1452. doi: 10.1128/MCB.21.5.1444-1452.2001 PubMedCrossRefGoogle Scholar
  42. Farr CJ, Marshall CJ, Easty DJ et al (1988) A study of ras gene mutations in colonic adenomas from familial polyposis coli patients. Oncogene 3(6):673–678PubMedGoogle Scholar
  43. Fearon ER (2011a) Molecular genetics of colorectal cancer. Annu Rev Pathol 6:479–507. doi: 10.1146/annurev-pathol-011110-130235 PubMedCrossRefGoogle Scholar
  44. Fearon ER (2011b) Molecular genetics of colorectal cancer. Annu Rev Pathol 6:479–507PubMedCrossRefGoogle Scholar
  45. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767PubMedCrossRefGoogle Scholar
  46. Fehrenbacher N, Bar-Sagi D, Philips M (2009) Ras/MAPK signaling from endomembranes. Mol Oncol 3(4):297–307PubMedCrossRefGoogle Scholar
  47. Flaherty KT, Infante JR, Daud A et al (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. doi: 10.1056/NEJMoa1210093 Google Scholar
  48. Forrester K, Almoguera C, Han K et al (1987) Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature 327(6120):298–303PubMedCrossRefGoogle Scholar
  49. Giacchetti S, Perpoint B, Zidani R et al (2000) Phase III multicenter randomized trial of oxaliplatin added to chronomodulated fluorouracil-leucovorin as first-line treatment of metastatic colorectal cancer. J Clin Oncol 18(1):136–147PubMedGoogle Scholar
  50. Gonzalez-Garcia A, Pritchard CA, Paterson HF et al (2005) RalGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell 7(3):219–226. doi: 10.1016/j.ccr.2005.01.029 PubMedCrossRefGoogle Scholar
  51. Guerrero S, Casanova I, Farre L et al (2000) K-ras codon 12 mutation induces higher level of resistance to apoptosis and predisposition to anchorage-independent growth than codon 13 mutation or proto-oncogene overexpression. Cancer Res 60(23):6750–6756PubMedGoogle Scholar
  52. Gupta S, Ramjaun AR, Haiko P et al (2007) Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 129(5):957–968. doi: 10.1016/j.cell.2007.03.051 PubMedCrossRefGoogle Scholar
  53. Gysin S, Salt M, Young A et al (2011) Therapeutic strategies for targeting ras proteins. Genes Cancer 2(3):359–372PubMedCrossRefGoogle Scholar
  54. Haigis KM, Kendall KR, Wang Y et al (2008) Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet 40(5):600–608PubMedCrossRefGoogle Scholar
  55. Hao H, Muniz-Medina VM, Mehta H et al (2007) Context-dependent roles of mutant B-Raf signaling in melanoma and colorectal carcinoma cell growth. Mol Cancer Ther 6(8):2220–2229. doi: 10.1158/1535-7163.MCT-06-0728 PubMedCrossRefGoogle Scholar
  56. Hatzivassiliou G, Song K, Yen I et al (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464(7287):431–435PubMedCrossRefGoogle Scholar
  57. Hatzivassiliou G, Liu B, O’Brien C et al (2012) ERK inhibition overcomes acquired resistance to MEK inhibitors. Mol Cancer Ther. doi: 10.1158/1535-7163.MCT-11-1010 PubMedGoogle Scholar
  58. Heid I, Lubeseder-Martellato C, Sipos B et al (2011) Early requirement of Rac1 in a mouse model of pancreatic cancer. Gastroenterology 141(2):719–730, 730. e1–7. doi:  10.1053/j.gastro.2011.04.043 Google Scholar
  59. Heidorn SJ, Milagre C, Whittaker S et al (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140(2):209–221. doi: 10.1016/j.cell.2009.12.040 PubMedCrossRefGoogle Scholar
  60. Hoeflich KP, Herter S, Tien J et al (2009) Antitumor efficacy of the novel RAF inhibitor GDC-0879 is predicted by BRAFV600E mutational status and sustained extracellular signal-regulated kinase/mitogen-activated protein kinase pathway suppression. Cancer Res 69(7):3042–3051PubMedCrossRefGoogle Scholar
  61. Ikuta S, Edamatsu H, Li M et al (2008) Crucial role of phospholipase C epsilon in skin inflammation induced by tumor-promoting phorbol ester. Cancer Res 68(1):64–72. doi: 10.1158/0008-5472.CAN-07-3245 PubMedCrossRefGoogle Scholar
  62. Imamura Y, Morikawa T, Liao X et al (2012) Specific mutations in KRAS codons 12 and 13, and patient prognosis in 1075 BRAF wild-type colorectal cancers. Clin Cancer Res 18(17):4753–4763. doi: 10.1158/1078-0432.CCR-11-3210 PubMedCrossRefGoogle Scholar
  63. Irahara N, Baba Y, Nosho K et al (2010) NRAS mutations are rare in colorectal cancer. Diagn Mol Pathol 19(3):157–163PubMedCrossRefGoogle Scholar
  64. Janakiraman M, Vakiani E, Zeng Z et al (2010) Genomic and biological characterization of exon 4 KRAS mutations in human cancer. Cancer Res 70(14):5901–5911PubMedCrossRefGoogle Scholar
  65. Janssen KP, Alberici P, Fsihi H et al (2006) APC and oncogenic KRAS are synergistic in enhancing Wnt signaling in intestinal tumor formation and progression. Gastroenterology 131(4):1096–1109PubMedCrossRefGoogle Scholar
  66. Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi: 10.3322/caac.20107 PubMedCrossRefGoogle Scholar
  67. Jhawer M, Goel S, Wilson AJ et al (2008) PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res 68(6):1953–1961PubMedCrossRefGoogle Scholar
  68. Johnson L, Greenbaum D, Cichowski K et al (1997) K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev 11(19):2468–2481PubMedCrossRefGoogle Scholar
  69. Karapetis CS, Khambata-Ford S, Jonker DJ et al (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359(17):1757–1765. doi: 10.1056/NEJMoa0804385 PubMedCrossRefGoogle Scholar
  70. Kissil JL, Walmsley MJ, Hanlon L et al (2007) Requirement for Rac1 in a K-ras induced lung cancer in the mouse. Cancer Res 67(17):8089–8094. doi: 10.1158/0008-5472.CAN-07-2300 PubMedCrossRefGoogle Scholar
  71. Koera K, Nakamura K, Nakao K et al (1997) K-ras is essential for the development of the mouse embryo. Oncogene 15(10):1151–1159. doi: 10.1038/sj.onc.1201284 PubMedCrossRefGoogle Scholar
  72. Kopetz S, Desai J, Chan E et al (2010) PLX4032 in metastatic colorectal cancer patients with mutant BRAF tumors. ASCO Meeting Abstracts no 28(15 suppl):3534Google Scholar
  73. Laurent-Puig P, Cayre A, Manceau G et al (2009) Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J Clin Oncol 27(35):5924–5930. doi: 10.1200/JCO.2008.21.6796 PubMedCrossRefGoogle Scholar
  74. Li W, Zhu T, Guan KL (2004) Transformation potential of Ras isoforms correlates with activation of phosphatidylinositol 3-kinase but not ERK. J Biol Chem 279(36):37398–37406. doi: 10.1074/jbc.M405730200 PubMedCrossRefGoogle Scholar
  75. Li M, Edamatsu H, Kitazawa R et al (2009) Phospholipase Cepsilon promotes intestinal tumorigenesis of Apc(Min/+) mice through augmentation of inflammation and angiogenesis. Carcinogenesis 30(8):1424–1432PubMedCrossRefGoogle Scholar
  76. Lievre A, Bachet JB, Le Corre D et al (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66(8):3992–3995PubMedCrossRefGoogle Scholar
  77. Lievre A, Bachet JB, Boige V et al (2008) KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 26(3):374–379PubMedCrossRefGoogle Scholar
  78. Lim KH, Counter CM (2005) Reduction in the requirement of oncogenic Ras signaling to activation of PI3K/AKT pathway during tumor maintenance. Cancer Cell 8(5):381–392. doi: 10.1016/j.ccr.2005.10.014 PubMedCrossRefGoogle Scholar
  79. Lim KH, O’Hayer K, Adam SJ et al (2006) Divergent roles for RalA and RalB in malignant growth of human pancreatic carcinoma cells. Curr Biol 16(24):2385–2394PubMedCrossRefGoogle Scholar
  80. Liu M, Sjogren AK, Karlsson C et al (2010) Targeting the protein prenyltransferases efficiently reduces tumor development in mice with K-RAS-induced lung cancer. Proc Natl Acad Sci U S A 107(14):6471–6476. doi: 10.1073/pnas.0908396107 PubMedCrossRefGoogle Scholar
  81. Luo J, Emanuele MJ, Li D et al (2009) A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137(5):835–848PubMedCrossRefGoogle Scholar
  82. Luo F, Ye H, Hamoudi R et al (2010) K-ras exon 4A has a tumour suppressor effect on carcinogen-induced murine colonic adenoma formation. J Pathol 220(5):542–550. doi: 10.1002/path.2672 PubMedCrossRefGoogle Scholar
  83. Malliri A, van der Kammen RA, Clark K et al (2002) Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature 417(6891):867–871. doi: 10.1038/nature00848 PubMedCrossRefGoogle Scholar
  84. Malliri A, Rygiel TP, van der Kammen RA et al (2006) The rac activator Tiam1 is a Wnt-responsive gene that modifies intestinal tumor development. J Biol Chem 281(1):543–548PubMedCrossRefGoogle Scholar
  85. Mamane Y, Petroulakis E, LeBacquer O et al (2006) mTOR, translation initiation and cancer. Oncogene 25(48):6416–6422PubMedCrossRefGoogle Scholar
  86. Marais R, Light Y, Paterson HF et al (1997) Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem 272(7):4378–4383PubMedCrossRefGoogle Scholar
  87. Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361(25):2449–2460. doi: 10.1056/NEJMra0804588 PubMedCrossRefGoogle Scholar
  88. Martin TD, Samuel JC, Routh ED et al (2011) Activation and involvement of Ral GTPases in colorectal cancer. Cancer Res 71(1):206–215PubMedCrossRefGoogle Scholar
  89. Mason CS, Springer CJ, Cooper RG et al (1999) Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J 18(8):2137–2148PubMedCrossRefGoogle Scholar
  90. Matallanas D, Birtwistle M, Romano D et al (2011) Raf family kinases: old dogs have learned new tricks. Genes Cancer 2(3):232–260. doi: 10.1177/1947601911407323 PubMedCrossRefGoogle Scholar
  91. McFall A, Ulku A, Lambert QT et al (2001) Oncogenic Ras blocks anoikis by activation of a novel effector pathway independent of phosphatidylinositol 3-kinase. Mol Cell Biol 21(16):5488–5499. doi: 10.1128/MCB.21.16.5488-5499.2001 PubMedCrossRefGoogle Scholar
  92. Michaelson JS, Cho S, Browning B et al (2005) Tweak induces mammary epithelial branching morphogenesis. Oncogene 24(16):2613–2624. doi: 10.1038/sj.onc.1208208 PubMedCrossRefGoogle Scholar
  93. Mirzoeva OK, Das D, Heiser LM et al (2009) Basal subtype and MAPK/ERK kinase (MEK)-phosphoinositide 3-kinase feedback signaling determine susceptibility of breast cancer cells to MEK inhibition. Cancer Res 69(2):565–572PubMedCrossRefGoogle Scholar
  94. Montagut C, Settleman J (2009) Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett 283(2):125–134PubMedCrossRefGoogle Scholar
  95. Neel NF, Martin TD, Stratford JK et al (2011) The RalGEF-Ral effector signaling network: the road less traveled for anti-Ras drug discovery. Genes Cancer 2(3):275–287. doi: 10.1177/1947601911407329 PubMedCrossRefGoogle Scholar
  96. Oberholzer PA, Kee D, Dziunycz P et al (2012) RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J Clin Oncol 30(3):316–321. doi: 10.1200/JCO.2011.36.7680 PubMedCrossRefGoogle Scholar
  97. Ong CC, Jubb AM, Haverty PM et al (2011) Targeting p21-activated kinase 1 (PAK1) to induce apoptosis of tumor cells. Proc Natl Acad Sci U S A 108(17):7177–7182. doi: 10.1073/pnas.1103350108 PubMedCrossRefGoogle Scholar
  98. Parsons DW, Wang TL, Samuels Y et al (2005) Colorectal cancer: mutations in a signalling pathway. Nature 436(7052):792PubMedCrossRefGoogle Scholar
  99. Patek CE, Arends MJ, Rose L et al (2008) The pro-apoptotic K-Ras 4A proto-oncoprotein does not affect tumorigenesis in the ApcMin/+ mouse small intestine. BMC Gastroenterol 8:24. doi: 10.1186/1471-230X-8-24 PubMedCrossRefGoogle Scholar
  100. Paz A, Haklai R, Elad-Sfadia G et al (2001) Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20(51):7486–7493. doi: 10.1038/sj.onc.1204950 PubMedCrossRefGoogle Scholar
  101. Plowman SJ, Williamson DJ, O’Sullivan MJ et al (2003) While K-ras is essential for mouse development, expression of the K-ras 4A splice variant is dispensable. Mol Cell Biol 23(24):9245–9250PubMedCrossRefGoogle Scholar
  102. Plowman SJ, Berry RL, Bader SA et al (2006) K-ras 4A and 4B are co-expressed widely in human tissues, and their ratio is altered in sporadic colorectal cancer. J Exp Clin Cancer Res 25(2):259–267PubMedGoogle Scholar
  103. Potenza N, Vecchione C, Notte A et al (2005) Replacement of K-Ras with H-Ras supports normal embryonic development despite inducing cardiovascular pathology in adult mice. EMBO Rep 6(5):432–437. doi: 10.1038/sj.embor.7400397 PubMedCrossRefGoogle Scholar
  104. Poulikakos PI, Zhang C, Bollag G et al (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464(7287):427–430PubMedCrossRefGoogle Scholar
  105. Prahallad A, Sun C, Huang S et al (2012) Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483(7387):100–103. doi: 10.1038/nature10868 PubMedCrossRefGoogle Scholar
  106. Prasad SS, Baillie DL (1989) Evolutionarily conserved coding sequences in the dpy-20-unc-22 region of Caenorhabditis elegans. Genomics 5(2):185–198PubMedCrossRefGoogle Scholar
  107. Pratilas CA, Taylor BS, Ye Q et al (2009) (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci U S A 106(11):4519–4524PubMedCrossRefGoogle Scholar
  108. Pretlow TP, Pretlow TG (2005) Mutant KRAS in aberrant crypt foci (ACF): initiation of colorectal cancer? Biochim Biophys Acta 1756(2):83–96PubMedGoogle Scholar
  109. Price TJ, Hardingham JE, Lee CK et al (2011) Impact of KRAS and BRAF gene mutation status on outcomes from the phase III AGITG MAX trial of capecitabine alone or in combination with bevacizumab and mitomycin in advanced colorectal cancer. J Clin Oncol 29(19):2675–2682PubMedCrossRefGoogle Scholar
  110. Rajagopalan H, Bardelli A, Lengauer C et al (2002) Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418(6901):934. doi: 10.1038/418934a PubMedCrossRefGoogle Scholar
  111. Rinehart J, Adjei AA, Lorusso PM et al (2004) Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol 22(22):4456–4462PubMedCrossRefGoogle Scholar
  112. Roth AD, Tejpar S, Delorenzi M et al (2010) Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60–00 trial. J Clin Oncol 28(3):466–474PubMedCrossRefGoogle Scholar
  113. Saltz LB, Meropol NJ, Loehrer PJ Sr et al (2004) Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 22(7):1201–1208. doi: 10.1200/JCO.2004.10.182 PubMedCrossRefGoogle Scholar
  114. Samowitz WS, Sweeney C, Herrick J et al (2005) Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res 65(14):6063–6069PubMedCrossRefGoogle Scholar
  115. Samuels Y, Wang Z, Bardelli A et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304(5670):554. doi: 10.1126/science.1096502 PubMedCrossRefGoogle Scholar
  116. Santini D, Loupakis F, Vincenzi B et al (2008) High concordance of KRAS status between primary colorectal tumors and related metastatic sites: implications for clinical practice. Oncologist 13(12):1270–1275PubMedCrossRefGoogle Scholar
  117. Saridaki Z, Papadatos-Pastos D, Tzardi M et al (2010) BRAF mutations, microsatellite instability status and cyclin D1 expression predict metastatic colorectal patients’ outcome. Br J Cancer 102(12):1762–1768PubMedCrossRefGoogle Scholar
  118. Scholl C, Frohling S, Dunn IF et al (2009) Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137(5):821–834PubMedCrossRefGoogle Scholar
  119. Shalom-Feuerstein R, Cooks T, Raz A et al (2005) Galectin-3 regulates a molecular switch from N-Ras to K-Ras usage in human breast carcinoma cells. Cancer Res 65(16):7292–7300. doi: 10.1158/0008-5472.CAN-05-0775 PubMedCrossRefGoogle Scholar
  120. Shimizu K, Goldfarb M, Suard Y et al (1983) Three human transforming genes are related to the viral ras oncogenes. Proc Natl Acad Sci U S A 80(8):2112–2116PubMedCrossRefGoogle Scholar
  121. Shirasawa S, Furuse M, Yokoyama N et al (1993) Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science 260(5104):85–88PubMedCrossRefGoogle Scholar
  122. Siegel R, Ward E, Brawley O et al (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61(4):212–236. doi: 10.3322/caac.20121 PubMedCrossRefGoogle Scholar
  123. Sjoblom T, Jones S, Wood LD et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314(5797):268–274. doi: 10.1126/science.1133427 PubMedCrossRefGoogle Scholar
  124. Sjogren AK, Andersson KM, Liu M et al (2007) GGTase-I deficiency reduces tumor formation and improves survival in mice with K-RAS-induced lung cancer. J Clin Invest 117(5):1294–1304. doi: 10.1172/JCI30868 PubMedCrossRefGoogle Scholar
  125. Solit DB, Garraway LA, Pratilas CA et al (2006) BRAF mutation predicts sensitivity to MEK inhibition. Nature 439(7074):358–362PubMedCrossRefGoogle Scholar
  126. Souglakos J, Philips J, Wang R et al (2009) Prognostic and predictive value of common mutations for treatment response and survival in patients with metastatic colorectal cancer. Br J Cancer 101(3):465–472PubMedCrossRefGoogle Scholar
  127. Su F, Viros A, Milagre C et al (2012) RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med 366(3):207–215. doi: 10.1056/NEJMoa1105358 PubMedCrossRefGoogle Scholar
  128. Takayama T, Ohi M, Hayashi T et al (2001) Analysis of K-ras, APC, and beta-catenin in aberrant crypt foci in sporadic adenoma, cancer, and familial adenomatous polyposis. Gastroenterology 121(3):599–611PubMedCrossRefGoogle Scholar
  129. Tol J, Nagtegaal ID, Punt CJ (2009) BRAF mutation in metastatic colorectal cancer. N Engl J Med 361(1):98–99PubMedCrossRefGoogle Scholar
  130. Tsai J, Lee JT, Wang W et al (2008) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci U S A 105(8):3041–3046PubMedCrossRefGoogle Scholar
  131. Udell CM, Rajakulendran T, Sicheri F et al (2011) Mechanistic principles of RAF kinase signaling. Cell Mol Life Sci 68(4):553–565. doi: 10.1007/s00018-010-0520-6 PubMedCrossRefGoogle Scholar
  132. Vakiani E, Solit DB (2011) KRAS and BRAF: drug targets and predictive biomarkers. J Pathol 223(2):219–229PubMedCrossRefGoogle Scholar
  133. Vakiani E, Yantiss RK (2009) Pathologic features and biologic importance of colorectal serrated polyps. Adv Anat Pathol 16(2):79–91PubMedCrossRefGoogle Scholar
  134. Vakiani E, Janakiraman M, Shen R et al (2012) Comparative genomic analysis of primary versus metastatic colorectal carcinomas. J Clin Oncol 30(24):2956–2962. doi: 10.1200/JCO.2011.38.2994 PubMedCrossRefGoogle Scholar
  135. Van Cutsem E, Kohne CH, Lang I et al (2011) Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol 29(15):2011–2019PubMedCrossRefGoogle Scholar
  136. Velho S, Oliveira C, Ferreira A et al (2005) The prevalence of PIK3CA mutations in gastric and colon cancer. Eur J Cancer 41(11):1649–1654PubMedCrossRefGoogle Scholar
  137. Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299–1304PubMedCrossRefGoogle Scholar
  138. Vigil D, Cherfils J, Rossman KL et al (2010) Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nature reviews. Cancer 10(12):842–857. doi: 10.1038/nrc2960 PubMedGoogle Scholar
  139. Vogelstein B, Fearon ER, Hamilton SR et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319(9):525–532PubMedCrossRefGoogle Scholar
  140. Wahlstrom AM, Cutts BA, Liu M et al (2008) Inactivating Icmt ameliorates K-RAS-induced myeloproliferative disease. Blood 112(4):1357–1365. doi: 10.1182/blood-2007-06-094060 PubMedCrossRefGoogle Scholar
  141. Wang Y, Van Becelaere K, Jiang P et al (2005) A role for K-ras in conferring resistance to the MEK inhibitor, CI-1040. Neoplasia 7(4):336–347PubMedCrossRefGoogle Scholar
  142. Wang Y, Ngo VN, Marani M et al (2010) Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene 29(33):4658–4670. doi: 10.1038/onc.2010.218 PubMedCrossRefGoogle Scholar
  143. Wee S, Jagani Z, Xiang KX et al (2009) PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res 69(10):4286–4293PubMedCrossRefGoogle Scholar
  144. Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118(Pt 5):843–846. doi: 10.1242/jcs.01660 PubMedCrossRefGoogle Scholar
  145. Wilson PM, Labonte MJ, Lenz HJ (2010) Molecular markers in the treatment of metastatic colorectal cancer. Cancer J 16(3):262–272. doi: 10.1097/PPO.0b013e3181e07738 PubMedCrossRefGoogle Scholar
  146. Wong R, Cunningham D (2008) Using predictive biomarkers to select patients with advanced colorectal cancer for treatment with epidermal growth factor receptor antibodies. J Clin Oncol 26(35):5668–5670PubMedCrossRefGoogle Scholar
  147. Wood LD, Parsons DW, Jones S et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318(5853):1108–1113. doi: 10.1126/science.1145720 PubMedCrossRefGoogle Scholar
  148. Yeh JJ, Routh ED, Rubinas T et al (2009) KRAS/BRAF mutation status and ERK1/2 activation as biomarkers for MEK1/2 inhibitor therapy in colorectal cancer. Mol Cancer Ther 8(4):834–843PubMedCrossRefGoogle Scholar
  149. Zhang YJ, Tian XQ, Sun DF et al (2009) Combined inhibition of MEK and mTOR signaling inhibits initiation and progression of colorectal cancer. Cancer Invest 27(3):273–285PubMedCrossRefGoogle Scholar
  150. Zhao L, Vogt PK (2008) Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci U S A 105(7):2652–2657. doi: 10.1073/pnas.0712169105 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Katherine H. Pedone
    • 1
  • Jennifer L. Sells
    • 1
  • Channing J. Der
    • 1
  1. 1.University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer CenterChapel HillUSA

Personalised recommendations