Skip to main content

Copy-Number Alterations in the Colorectal Cancer Genome

  • Chapter
  • First Online:
Molecular Pathogenesis of Colorectal Cancer
  • 1449 Accesses

Abstract

Colorectal cancer (CRC) has classically been divided into two main genetic/molecular subtypes; tumors characterized by chromosomal instability (CIN) and those with microsatellite instability (MSI). Although cases with MSI often have relatively bland copy-number profiles, cases characterized by CIN typically possess many somatic copy-number alterations (SCNAs). Thanks to the remarkable progress in copy-number profiling techniques with both increased resolution and sample throughput, the landscape of the SCNAs in CRC has increasingly begun to be revealed. Many of the arm-level SCNAs of CRC are shared by many epithelial cancers but some of them are unique to gut epithelial cancers or to CRC. Gain of 8q, 20p/q and loss of 17p are commonly observed across the gut adenocarcinomas. More unique to CRC are highly recurrent chromosomal gains of 13q. Important focal SCNAs include the amplifications of 8q at MYC, 20q around BCL2L1, 11p at IGF2, and miR-483, and 17q at ERBB2. The amplification of ERBB2 is particularly important because it is clinically targetable. Focal loss of tumor suppressor genes such as TP53 and SMAD4 reflects the selective advantage of loss of these factors. Although we began to reveal the landscape of SCNA in CRC, we have yet to fully appreciate the biologic rationale and significance for this spectrum of recurrent structural alterations in the genomes of these cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alitalo K, Schwab M et al (1983) Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc Natl Acad Sci USA 80(6):1707–1711

    Article  PubMed  CAS  Google Scholar 

  • Alitalo K, Winqvist R et al (1984) Aberrant expression of an amplified c-myb oncogene in two cell lines from a colon carcinoma. Proc Natl Acad Sci USA 81(14):4534–4538

    Article  PubMed  CAS  Google Scholar 

  • Al-Kuraya K, Novotny H et al (2007) HER2, TOP2A, CCND1, EGFR and C-MYC oncogene amplification in colorectal cancer. J Clin Pathol 60(7):768–772

    Article  PubMed  CAS  Google Scholar 

  • Anand S, Penrhyn-Lowe S et al (2003) AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 3(1):51–62

    Article  PubMed  CAS  Google Scholar 

  • Ashton-Rickardt PG, Dunlop MG et al (1989) High frequency of APC loss in sporadic colorectal carcinoma due to breaks clustered in 5q21-22

    PubMed  CAS  Google Scholar 

  • Bang YJ, Van Cutsem E et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376(9742):687–697

    Article  PubMed  CAS  Google Scholar 

  • Bass AJ, Lawrence MS et al (2011) Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nat Genet 43(10):964–968

    Article  PubMed  CAS  Google Scholar 

  • Bean J, Brennan C et al (2007) MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci USA 104(52):20932–20937

    Article  PubMed  CAS  Google Scholar 

  • Beroukhim R, Getz G et al (2007) Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci 104(50):20007–20012

    Article  PubMed  CAS  Google Scholar 

  • Beroukhim R, Mermel CH et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463(7283):899–905

    Article  PubMed  CAS  Google Scholar 

  • Bertagnolli MM, Redston M et al (2011) Microsatellite instability and loss of heterozygosity at chromosomal location 18q: prospective evaluation of biomarkers for stages II and III colon cancer—a study of CALGB 9581 and 89803. J Clin Oncol 29(23):3153–3162

    Google Scholar 

  • Bignell GR, Huang J et al (2004) High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Res 14(2):287–295

    Article  PubMed  CAS  Google Scholar 

  • Burstein HJ, Harris LN et al (2003) Trastuzumab and vinorelbine as first-line therapy for HER2-overexpressing metastatic breast cancer: multicenter phase II trial with clinical outcomes, analysis of serum tumor markers as predictive factors, and cardiac surveillance algorithm. J Clin Oncol 21(15):2889–2895

    Article  PubMed  CAS  Google Scholar 

  • Cahill DP, Lengauer C et al (1998) Mutations of mitotic checkpoint genes in human cancers. Nature 392(6673):300–303

    Article  PubMed  CAS  Google Scholar 

  • Camps J, Nguyen QT et al (2009) Integrative genomics reveals mechanisms of copy number alterations responsible for transcriptional deregulation in colorectal cancer. Genes Chromosomes Cancer 48(11):1002–1017

    Article  PubMed  CAS  Google Scholar 

  • Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407):330–337

    Article  Google Scholar 

  • Carvalho B, Postma C et al (2009) Multiple putative oncogenes at the chromosome 20q amplicon contribute to colorectal adenoma to carcinoma progression. Gut 58(1):79–89

    Article  PubMed  CAS  Google Scholar 

  • Cheng YW, Pincas H et al (2008) CpG island methylator phenotype associates with low-degree chromosomal abnormalities in colorectal cancer. Clin Cancer Res 14(19):6005–6013

    Article  PubMed  CAS  Google Scholar 

  • Chiang DY, Getz G et al (2009) High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat Methods 6(1):99–103

    Article  PubMed  CAS  Google Scholar 

  • Clevers H (2004) Wnt breakers in colon cancer. Cancer Cell 5(1):5–6

    Article  PubMed  CAS  Google Scholar 

  • Crasta K, Ganem NJ et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482(7383):53–58

    Article  PubMed  CAS  Google Scholar 

  • Cui H, Cruz-Correa M et al (2003) Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299(5613):1753–1755

    Article  PubMed  CAS  Google Scholar 

  • D’Emilia J, Bulovas K et al (1989) Expression of the c-erbB-2 gene product (p185) at different stages of neoplastic progression in the colon. Oncogene 4(10):1233–1239

    PubMed  Google Scholar 

  • Darsigny M, Babeu JP et al (2010) Hepatocyte nuclear factor-4alpha promotes gut neoplasia in mice and protects against the production of reactive oxygen species. Cancer Res 70(22):9423–9433

    Article  PubMed  CAS  Google Scholar 

  • Diep CB, Kleivi K et al (2006) The order of genetic events associated with colorectal cancer progression inferred from meta-analysis of copy number changes. Genes Chromosomes Cancer 45(1):31–41

    Article  PubMed  CAS  Google Scholar 

  • Douglas EJ, Fiegler H et al (2004) Array comparative genomic hybridization analysis of colorectal cancer cell lines and primary carcinomas. Cancer Res 64(14):4817–4825

    Article  PubMed  CAS  Google Scholar 

  • Drusco A, Pekarsky Y et al (2011) Common fragile site tumor suppressor genes and corresponding mouse models of cancer. J Biomed Biotechnol 2011:984505

    Article  PubMed  Google Scholar 

  • Engelhardt M, Drullinsky P et al (1997) Telomerase and telomere length in the development and progression of premalignant lesions to colorectal cancer. Clin Cancer Res 3(11):1931–1941

    PubMed  CAS  Google Scholar 

  • Ewart-Toland A, Briassouli P et al (2003) Identification of Stk6/STK15 as a candidate low-penetrance tumor-susceptibility gene in mouse and human. Nat Genet 34(4):403–412

    Article  PubMed  CAS  Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5): 759–767

    Article  PubMed  CAS  Google Scholar 

  • Finley GG, Schulz NT et al (1989) Expression of the myc gene family in different stages of human colorectal cancer. Oncogene 4(8):963–971

    PubMed  CAS  Google Scholar 

  • Firestein R, Bass AJ et al (2008) CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 455(7212):547–551

    Article  PubMed  CAS  Google Scholar 

  • Ganem NJ, Godinho SA et al (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460(7252):278–282

    Article  PubMed  CAS  Google Scholar 

  • Geiersbach KB, Samowitz WS (2011) Microsatellite instability and colorectal cancer. Arch Pathol Lab Med 135(10):1269–1277

    Article  PubMed  CAS  Google Scholar 

  • Gertler R, Rosenberg R et al (2004) Telomere length and human telomerase reverse transcriptase expression as markers for progression and prognosis of colorectal carcinoma. J Clin Oncol 22(10):1807–1814

    Article  PubMed  CAS  Google Scholar 

  • Goel A, Nagasaka T et al (2007) The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology 132(1):127–138

    Google Scholar 

  • Hermsen M, Postma C et al (2002) Colorectal adenoma to carcinoma progression follows multiple pathways of chromosomal instability. Gastroenterology 123(4):1109–1119

    Article  PubMed  CAS  Google Scholar 

  • Hughes S, Williams RD et al (2006) Meta-analysis and pooled re-analysis of copy number changes in colorectal cancer detected by comparative genomic hybridization. Anticancer Res 26(5A):3439–3444

    PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R et al (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300

    Article  PubMed  Google Scholar 

  • Katayama H, Ota T et al (1999) Mitotic kinase expression and colorectal cancer progression. J Natl Cancer Inst 91(13):1160–1162

    Article  PubMed  CAS  Google Scholar 

  • Kwei KA, Kung Y et al (2010) Genomic instability in breast cancer: pathogenesis and clinical implications. Mol Oncol 4(3):255–266

    Article  PubMed  CAS  Google Scholar 

  • Lengauer C, Kinzler KW et al (1998) Genetic instabilities in human cancers. Nature 396(6712):643–649

    Article  PubMed  CAS  Google Scholar 

  • Martin ES, Tonon G et al (2007) Common and distinct genomic events in sporadic colorectal cancer and diverse cancer types. Cancer Res 67(22):10736–10743

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Lopez E, Abad A et al (1998) Allelic loss on chromosome 18q as a prognostic marker in stage II colorectal cancer. Gastroenterology 114(6):1180–1187

    Article  PubMed  CAS  Google Scholar 

  • Maser RS, DePinho RA (2002) Connecting chromosomes, crisis, and cancer. Science 297(5581):565–569

    Article  PubMed  CAS  Google Scholar 

  • Meijer GA, Hermsen MA et al (1998) Progression from colorectal adenoma to carcinoma is associated with non-random chromosomal gains as detected by comparative genomic hybridisation. J Clin Pathol 51(12):901–909

    Article  PubMed  CAS  Google Scholar 

  • Meyerson M, Gabriel S et al (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11(10):685–696

    Article  PubMed  CAS  Google Scholar 

  • Morris EJ, Ji JY et al (2008) E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature 455(7212):552–556

    Article  PubMed  CAS  Google Scholar 

  • Murakami R, Tsukuma H et al (1990) Natural history of colorectal polyps and the effect of polypectomy on occurrence of subsequent cancer. Int J Cancer 46(2):159–164

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa H, Chadwick RB et al (2001) Loss of imprinting of the insulin-like growth factor II gene occurs by biallelic methylation in a core region of H19-associated CTCF-binding sites in colorectal cancer. Proc Natl Acad Sci USA 98(2):591–596

    Article  PubMed  CAS  Google Scholar 

  • Nakao K, Mehta KR et al (2004) High-resolution analysis of DNA copy number alterations in colorectal cancer by array-based comparative genomic hybridization. Carcinogenesis 25(8):1345–1357

    Article  PubMed  CAS  Google Scholar 

  • Nandan MO, McConnell BB et al (2008) Kruppel-like factor 5 mediates cellular transformation during oncogenic KRAS-induced intestinal tumorigenesis. Gastroenterology 134(1):120–130

    Article  PubMed  CAS  Google Scholar 

  • O’Hagan RC, Chang S et al (2002) Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell 2(2):149–155

    Article  PubMed  Google Scholar 

  • Ogino S, Nosho K et al (2009) Prognostic significance and molecular associations of 18q loss of heterozygosity: a cohort study of microsatellite stable colorectal cancers. J Clin Oncol 27(27):4591–4598

    Google Scholar 

  • Ogunbiyi OA, Goodfellow PJ et al (1998) Confirmation that chromosome 18q allelic loss in colon cancer is a prognostic indicator. J Clin Oncol 16(2):427–433

    Google Scholar 

  • Olshen AB, Venkatraman ES et al (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5(4):557–572

    Article  PubMed  Google Scholar 

  • Ooi A, Takehana T et al (2004) Protein overexpression and gene amplification of HER-2 and EGFR in colorectal cancers: an immunohistochemical and fluorescent in situ hybridization study. Mod Pathol 17(8):895–904

    Article  PubMed  CAS  Google Scholar 

  • Pellman D (2007) Cell biology: aneuploidy and cancer. Nature 446(7131):38–39

    Article  PubMed  CAS  Google Scholar 

  • Personeni N, Fieuws S et al (2008) Clinical usefulness of EGFR gene copy number as a predictive marker in colorectal cancer patients treated with cetuximab: a fluorescent in situ hybridization study. Clin Cancer Res 14(18):5869–5876

    Article  PubMed  CAS  Google Scholar 

  • Pino MS, Chung DC (2010) The chromosomal instability pathway in colon cancer. Gastroenterology 138(6):2059–2072

    Article  PubMed  CAS  Google Scholar 

  • Plentz RR, Wiemann SU et al (2003) Telomere shortening of epithelial cells characterises the adenoma-carcinoma transition of human colorectal cancer. Gut 52(9):1304–1307

    Article  PubMed  CAS  Google Scholar 

  • Poulogiannis G, McIntyre RE et al (2010) PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc Natl Acad Sci USA 107(34):15145–15150

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan H, Nowak MA et al (2003) The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer 3(9):695–701

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan H, Jallepalli PV et al (2004) Inactivation of hCDC4 can cause chromosomal instability. Nature 428(6978):77–81

    Article  PubMed  CAS  Google Scholar 

  • Ried T, Knutzen R et al (1996) Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer 15(4):234–245

    Article  PubMed  CAS  Google Scholar 

  • Rowley JD (1973) Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243(5405): 290–293

    Article  PubMed  CAS  Google Scholar 

  • Rudkin CT, Hungerford DA et al (1964) DNA contents of chromosome ph1 and chromosome 21 in human chronic granulocytic leukemia. Science 144:1229–1231

    Article  PubMed  CAS  Google Scholar 

  • Rudolph KL, Millard M et al (2001) Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 28(2):155–159

    Article  PubMed  CAS  Google Scholar 

  • Sillars-Hardebol AH, Carvalho B et al (2012) BCL2L1 has a functional role in colorectal cancer and its protein expression is associated with chromosome 20q gain. J Pathol 226(3):442–450

    Article  PubMed  CAS  Google Scholar 

  • Sodir NM, Chen X et al (2006) Smad3 deficiency promotes tumorigenesis in the distal colon of ApcMin/+ mice. Cancer Res 66(17):8430–8438

    Article  PubMed  CAS  Google Scholar 

  • Solimini NL, Xu Q et al (2012) Recurrent hemizygous deletions in cancers may optimize proliferative potential. Science 337(6090):104–109

    Article  PubMed  CAS  Google Scholar 

  • Starr TK, Allaei R et al (2009) A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 323(5922):1747–1750

    Article  PubMed  CAS  Google Scholar 

  • Takagi S, Kinouchi Y et al (1999) Telomere shortening and the clinicopathologic characteristics of human colorectal carcinomas. Cancer 86(8):1431–1436

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Sano B et al (2003) Polo-like kinase 1 (PLK1) is overexpressed in primary colorectal cancers. Cancer Sci 94(2):148–152

    Article  PubMed  CAS  Google Scholar 

  • Veeriah S, Taylor BS et al (2010) Somatic mutations of the Parkinson’s disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet 42(1):77–82

    Article  PubMed  CAS  Google Scholar 

  • Veronese A, Lupini L et al (2010) Oncogenic role of miR-483-3p at the IGF2/483 locus. Cancer Res 70(8):3140–3149

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Cummins JM et al (2004) Three classes of genes mutated in colorectal cancers with chromosomal instability. Cancer Res 64(9):2998–3001

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Wu TT et al (2001) Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med 344(16):1196–1206

    Article  PubMed  CAS  Google Scholar 

  • Wood LD, Parsons DW et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318(5853):1108–1113

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Li C et al (2004) An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res 64(9):3060–3071

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Richardson JA et al (1998) Smad3 mutant mice develop metastatic colorectal cancer. Cell 94(6):703–714

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam J. Bass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, J., Bass, A.J. (2013). Copy-Number Alterations in the Colorectal Cancer Genome. In: Haigis, Ph.D., K. (eds) Molecular Pathogenesis of Colorectal Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8412-7_10

Download citation

Publish with us

Policies and ethics