Skip to main content

The Genetics of Colorectal Cancer

  • Chapter
  • First Online:

Abstract

Colorectal cancer (CRC) develops over a period of years through a defined progression from a single aberrant crypt to a benign adenoma and ultimately to an invasive malignancy. These phenotypic steps parallel a series of underlying changes at the DNA level. Many of the critical tumor suppressor loci have been identified through cytogenetic or genetic linkage studies of inherited disorders that predispose affected family members to the development of benign or malignant lesions in the colorectal epithelium. Inactivating mutations in the APC gene not only were first identified in the germline of individuals with familial adenomatous polyposis coli but also are present in most sporadic CRCs. Germline mutations in MSH2, MLH1, MSH6, or PMS2 predispose individuals with Lynch syndrome to CRCs with DNA mismatch repair defects; these genes can be mutated or silenced in sporadic CRCs as well. Other inherited mutations are responsible for benign colorectal lesions that rarely progress to malignancy, including those found in the SMAD4, BMPR1A, and PTEN genes. Sporadic changes in these genes are found in malignant rather than premalignant lesions, suggesting that these mutations promote rather than initiate tumorigenesis. Genetic analysis of CRCs will permit stratification for improved prognosis and treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aaltonen LA et al (1993) Clues to the pathogenesis of familial colorectal cancer. Science 260(5109):812–816

    PubMed  CAS  Google Scholar 

  • Abdul Khalek FJ, Gallicano GI, Mishra L (2010) Colon cancer stem cells. Gastrointest Cancer Res (suppl 1):S16–S23

    Google Scholar 

  • Akiyama Y et al (1997) Transforming growth factor beta type II receptor gene mutations in adenomas from hereditary nonpolyposis colorectal cancer. Gastroenterology 112(1):33–39

    PubMed  CAS  Google Scholar 

  • Alexandrow MG, Moses HL (1995) Transforming growth factor beta and cell cycle regulation. Cancer Res 55(7):1452–1457

    PubMed  CAS  Google Scholar 

  • Al-Tassan N et al (2002) Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nat Genet 30(2):227–232

    PubMed  CAS  Google Scholar 

  • Amos CI et al (1993) Peutz-Jeghers syndrome. In: Pagon RA et al (eds) Gene reviews. University of Washington, Seattle, WA

    Google Scholar 

  • Aretz S et al (2006) MUTYH-associated polyposis: 70 of 71 patients with biallelic mutations present with an attenuated or atypical phenotype. Int J Cancer 119(4):807–814

    PubMed  CAS  Google Scholar 

  • Aretz S et al (2007) High proportion of large genomic deletions and a genotype phenotype update in 80 unrelated families with juvenile polyposis syndrome. J Med Genet 44(11):702–709

    PubMed  CAS  Google Scholar 

  • Avizienyte E et al (1999) LKB1 somatic mutations in sporadic tumors. Am J Pathol 154(3):677–681

    PubMed  CAS  Google Scholar 

  • Beck NE et al (1997) Genetic testing is important in families with a history suggestive of hereditary non-polyposis colorectal cancer even if the Amsterdam criteria are not fulfilled. Br J Surg 84(2):233–237

    PubMed  CAS  Google Scholar 

  • Behrens J et al (1998) Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 280(5363):596–599

    PubMed  CAS  Google Scholar 

  • Boardman LA et al (1998) Increased risk for cancer in patients with the Peutz-Jeghers syndrome. Ann Intern Med 128(11):896–899

    PubMed  CAS  Google Scholar 

  • Bodmer WF et al (1987) Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature 328(6131):614–616

    PubMed  CAS  Google Scholar 

  • Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138(6):2073–2087 e3

    PubMed  CAS  Google Scholar 

  • Brosens LA et al (2007) Risk of colorectal cancer in juvenile polyposis. Gut 56(7):965–967

    PubMed  Google Scholar 

  • Brownstein MH, Wolf M, Bikowski JB (1978) Cowden’s disease: a cutaneous marker of breast cancer. Cancer 41(6):2393–2398

    PubMed  CAS  Google Scholar 

  • Calin GA et al (2000) Genetic progression in microsatellite instability high (MSI-H) colon cancers correlates with clinico-pathological parameters: a study of the TGRbetaRII, BAX, hMSH3, hMSH6, IGFIIR and BLM genes. Int J Cancer 89(3):230–235

    PubMed  CAS  Google Scholar 

  • Carr JC et al (2012) Germline mutations in SMAD4 disrupt bone morphogenetic protein signaling. J Surg Res 174(2):211–214

    PubMed  CAS  Google Scholar 

  • Chan TL et al (2006) Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat Genet 38(10):1178–1183

    PubMed  CAS  Google Scholar 

  • Cohen MM Jr (1990) Bannayan-Riley-Ruvalcaba syndrome: renaming three formerly recognized syndromes as one etiologic entity. Am J Med Genet 35(2):291–292

    PubMed  Google Scholar 

  • Cripps WH (1882) Two cases of disseminated polypus of the rectum. Trans Pathol Soc Lond 33:165–168

    Google Scholar 

  • Dai J et al (2005) Bone morphogenetic protein-6 promotes osteoblastic prostate cancer bone metastases through a dual mechanism. Cancer Res 65(18):8274–8285

    PubMed  CAS  Google Scholar 

  • Datta K et al (1996) Akt is a direct target of the phosphatidylinositol 3-kinase. Activation by growth factors, v-src and v-Ha-ras, in Sf9 and mammalian cells. J Biol Chem 271(48):30835–30839

    PubMed  CAS  Google Scholar 

  • Diamond M (1939) Adenoma of the rectum in children: report of a case in a thirty-month-old girl. Am J Dis Child 57:360–367

    Google Scholar 

  • Dicuonzo G et al (2001) Colorectal carcinomas and PTEN/MMAC1 gene mutations. Clin Cancer Res 7(12):4049–4053

    PubMed  CAS  Google Scholar 

  • Dolwani S et al (2003) MYH polyposis: a new autosomal recessive form of familial adenomatous polyposis due to defective base excision repair—reappraisal of genetic risk and family management. Gastroenterology 124(suppl 1):A46–A198

    Google Scholar 

  • Douglas JA et al (2005) History and molecular genetics of Lynch syndrome in family G: a century later. JAMA 294(17):2195–2202

    PubMed  CAS  Google Scholar 

  • Dukes C (1930) The hereditary factor in polyposis intestini, or multiple adenomata. Cancer Rev Br 5:241–256

    Google Scholar 

  • Duncan BK, Miller JH (1980) Mutagenic deamination of cytosine residues in DNA. Nature 287(5782):560–561

    PubMed  CAS  Google Scholar 

  • Dutrillaux B (1988) [Recent data on the cytogenetics of colorectal adenocarcinoma]. Bull Cancer 75(6):509–516

    PubMed  CAS  Google Scholar 

  • Eng C, Ji H (1998) Molecular classification of the inherited hamartoma polyposis syndromes: clearing the muddied waters. Am J Hum Genet 62(5):1020–1022

    PubMed  CAS  Google Scholar 

  • Fearon ER et al (1990) Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247(4938):49–56

    PubMed  CAS  Google Scholar 

  • Fevr T et al (2007) Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol 27(21):7551–7559

    PubMed  CAS  Google Scholar 

  • Fishel R et al (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75(5):1027–1038

    PubMed  CAS  Google Scholar 

  • Fuchs CS et al (1994) A prospective study of family history and the risk of colorectal cancer. N Engl J Med 331(25):1669–1674

    PubMed  CAS  Google Scholar 

  • Galiatsatos P, Foulkes WD (2006) Familial adenomatous polyposis. Am J Gastroenterol 101(2):385–398

    PubMed  Google Scholar 

  • Gardner E (1951) A genetic and clinical study of intestinal polyposis, a predisposing factor for carcinoma of the colon and rectum. Am J Hum Genet 3:167–176

    PubMed  CAS  Google Scholar 

  • Gardner EJ, Plenk HP (1952) Hereditary pattern for multiple osteomas in a family group. Am J Hum Genet 4(1):31–36

    PubMed  CAS  Google Scholar 

  • Gardner EJ, Richards RC (1953) Multiple cutaneous and subcutaneous lesions occurring simultaneously with hereditary polyposis and osteomatosis. Am J Hum Genet 5(2):139–147

    PubMed  CAS  Google Scholar 

  • Gardner EJ, Stephens FE (1950) Cancer of the lower digestive tract in one family group. Am J Hum Genet 2(1):41–48

    PubMed  CAS  Google Scholar 

  • Gazzoli I et al (2002) A hereditary nonpolyposis colorectal carcinoma case associated with hypermethylation of the MLH1 gene in normal tissue and loss of heterozygosity of the unmethylated allele in the resulting microsatellite instability-high tumor. Cancer Res 62(14):3925–3928

    PubMed  CAS  Google Scholar 

  • Giardiello F (1995) Gastrointestinal polyposis syndromes and hereditary nonpolyposis colorectal cancer. In: Rustigi AK (ed) Gastrointestinal cancers: biology, diagnosis, and therapy. Lippincott-Raven, Philadelphia, pp 367–377

    Google Scholar 

  • Giardiello FM et al (1987) Increased risk of cancer in the Peutz-Jeghers syndrome. N Engl J Med 316(24):1511–1514

    PubMed  CAS  Google Scholar 

  • Giardiello FM et al (1991) Colorectal neoplasia in juvenile polyposis or juvenile polyps. Arch Dis Child 66(8):971–975

    PubMed  CAS  Google Scholar 

  • Goel A et al (2007) The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology 132(1):127–138

    PubMed  CAS  Google Scholar 

  • Groden J et al (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66(3):589–600

    PubMed  CAS  Google Scholar 

  • Groen EJ et al (2008) Extra-intestinal manifestations of familial adenomatous polyposis. Ann Surg Oncol 15(9):2439–2450

    PubMed  Google Scholar 

  • Haggar FA, Boushey RP (2009) Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg 22(4):191–197

    PubMed  Google Scholar 

  • Half E, Bercovich D, Rozen P (2009) Familial adenomatous polyposis. Orphanet J Rare Dis 4:22

    PubMed  Google Scholar 

  • Halford SE et al (2003) Germline mutations but not somatic changes at the MYH locus contribute to the pathogenesis of unselected colorectal cancers. Am J Pathol 162(5):1545–1548

    PubMed  CAS  Google Scholar 

  • Hamilton SR et al (1995) The molecular basis of Turcot’s syndrome. N Engl J Med 332(13):839–847

    PubMed  CAS  Google Scholar 

  • Hawley SA et al (2003) Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2(4):28

    PubMed  Google Scholar 

  • He TC et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281(5382):1509–1512

    PubMed  CAS  Google Scholar 

  • Hemminki A et al (1994) Loss of the wild type MLH1 gene is a feature of hereditary nonpolyposis colorectal cancer. Nat Genet 8(4):405–410

    PubMed  CAS  Google Scholar 

  • Hemminki A et al (1998) A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391(6663):184–187

    PubMed  CAS  Google Scholar 

  • Henderson BR (2000) Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nat Cell Biol 2(9):653–660

    PubMed  CAS  Google Scholar 

  • Hendriks YM et al (2004) Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology 127(1):17–25

    PubMed  CAS  Google Scholar 

  • Herrera L et al (1986) Gardner syndrome in a man with an interstitial deletion of 5q. Am J Med Genet 25(3):473–476

    PubMed  CAS  Google Scholar 

  • Holliday R (1964) A mechanism for gene conversion in fungi. Genet Res 5:282–304

    Google Scholar 

  • Howe JR et al (1998) Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280(5366):1086–1088

    PubMed  CAS  Google Scholar 

  • Howe JR et al (2001) Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet 28(2):184–187

    PubMed  CAS  Google Scholar 

  • Howe JR et al (2004) The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations. J Med Genet 41(7):484–491

    PubMed  CAS  Google Scholar 

  • Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17(5):548–558

    PubMed  CAS  Google Scholar 

  • Hulsken J, Birchmeier W, Behrens J (1994) E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. J Cell Biol 127(6 Pt 2):2061–2069

    PubMed  CAS  Google Scholar 

  • Ichii S et al (1993) Detailed analysis of genetic alterations in colorectal tumors from patients with and without familial adenomatous polyposis (FAP). Oncogene 8(9):2399–2405

    PubMed  CAS  Google Scholar 

  • Iino H et al (2000) DNA microsatellite instability and mismatch repair protein loss in adenomas presenting in hereditary non-polyposis colorectal cancer. Gut 47(1):37–42

    PubMed  CAS  Google Scholar 

  • Ionov Y et al (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363(6429):558–561

    PubMed  CAS  Google Scholar 

  • Jager AC et al (1997) Reduced frequency of extracolonic cancers in hereditary nonpolyposis colorectal cancer families with monoallelic hMLH1 expression. Am J Hum Genet 61(1):129–138

    PubMed  CAS  Google Scholar 

  • Jass JR (2006) Hereditary non-polyposis colorectal cancer: the rise and fall of a confusing term. World J Gastroenterol 12(31):4943–4950

    PubMed  CAS  Google Scholar 

  • Jeghers H, Mc KV, Katz KH (1949) Generalized intestinal polyposis and melanin spots of the oral mucosa, lips and digits; a syndrome of diagnostic significance. N Engl J Med 241(26):1031–1036

    PubMed  CAS  Google Scholar 

  • Jen J et al (1994) Molecular determinants of dysplasia in colorectal lesions. Cancer Res 54(21):5523–5526

    PubMed  CAS  Google Scholar 

  • Jenne DE et al (1998) Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 18(1):38–43

    PubMed  CAS  Google Scholar 

  • Jones S et al (2002) Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C→T:A mutations. Hum Mol Genet 11(23):2961–2967

    PubMed  CAS  Google Scholar 

  • Joslyn G et al (1991) Identification of deletion mutations and three new genes at the familial polyposis locus. Cell 66(3):601–613

    PubMed  CAS  Google Scholar 

  • Kennedy SG et al (1997) The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 11(6):701–713

    PubMed  CAS  Google Scholar 

  • Kim JC et al (2008) Individual tumorigenesis pathways of sporadic colorectal adenocarcinomas are associated with the biological behavior of tumors. Cancer Sci 99(7):1348–1354

    PubMed  CAS  Google Scholar 

  • Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87(2):159–170

    PubMed  CAS  Google Scholar 

  • Kinzler KW, Vogelstein B (1998) Landscaping the cancer terrain. Science 280(5366):1036–1037

    PubMed  CAS  Google Scholar 

  • Kinzler KW et al (1991) Identification of FAP locus genes from chromosome 5q21. Science 253(5020):661–665

    PubMed  CAS  Google Scholar 

  • Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68(4):820–823

    PubMed  Google Scholar 

  • Korinek V et al (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 275(5307):1784–1787

    PubMed  CAS  Google Scholar 

  • Kosinski C et al (2007) Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci U S A 104(39):15418–15423

    PubMed  CAS  Google Scholar 

  • Lanspa SJ et al (1990) Colorectal adenomas in the Lynch syndromes. Results of a colonoscopy screening program. Gastroenterology 98(5 Pt 1):1117–1122

    PubMed  CAS  Google Scholar 

  • Leppert M et al (1987) The gene for familial polyposis coli maps to the long arm of chromosome 5. Science 238(4832):1411–1413

    PubMed  CAS  Google Scholar 

  • Levy DB et al (1994) Inactivation of both APC alleles in human and mouse tumors. Cancer Res 54(22):5953–5958

    PubMed  CAS  Google Scholar 

  • Li DM, Sun H (1998) PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci U S A 95(26):15406–15411

    PubMed  CAS  Google Scholar 

  • Liaw D et al (1997) Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 16(1):64–67

    PubMed  CAS  Google Scholar 

  • Lindor NM et al (2005) Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. JAMA 293(16):1979–1985

    PubMed  CAS  Google Scholar 

  • Lipkin SM et al (2000) MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat Genet 24(1):27–35

    PubMed  CAS  Google Scholar 

  • Liu T et al (2001) The role of hPMS1 and hPMS2 in predisposing to colorectal cancer. Cancer Res 61(21):7798–7802

    PubMed  CAS  Google Scholar 

  • Liu HX et al (2003) The role of hMLH3 in familial colorectal cancer. Cancer Res 63(8):1894–1899

    PubMed  CAS  Google Scholar 

  • Llor X et al (2005) Differential features of colorectal cancers fulfilling Amsterdam criteria without involvement of the mutator pathway. Clin Cancer Res 11(20):7304–7310

    PubMed  CAS  Google Scholar 

  • Lloyd KM II, Dennis M (1963) Cowden’s disease. A possible new symptom complex with multiple system involvement. Ann Intern Med 58:136–142

    PubMed  Google Scholar 

  • Lombardo Y et al (2011) Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice. Gastroenterology 140(1):297–309

    PubMed  CAS  Google Scholar 

  • Loukola A et al (2000) Germline and somatic mutation analysis of MLH3 in MSI-positive colorectal cancer. Am J Pathol 157(2):347–352

    PubMed  CAS  Google Scholar 

  • Lu SL et al (1995) Mutations of the transforming growth factor-beta type II receptor gene and genomic instability in hereditary nonpolyposis colorectal cancer. Biochem Biophys Res Commun 216(2):452–457

    PubMed  CAS  Google Scholar 

  • Lu SL et al (1998) HNPCC associated with germline mutation in the TGF-beta type II receptor gene. Nat Genet 19(1):17–18

    PubMed  CAS  Google Scholar 

  • Luongo C et al (1994) Loss of Apc+ in intestinal adenomas from Min mice. Cancer Res 54(22):5947–5952

    PubMed  CAS  Google Scholar 

  • Lynch HT, Krush AJ (1971) Cancer family “G” revisited: 1895–1970. Cancer 27(6):1505–1511

    PubMed  CAS  Google Scholar 

  • Lynch HT, Lynch J (2000) Lynch syndrome: genetics, natural history, genetic counseling, and prevention. J Clin Oncol 18(21 suppl):19S–31S

    PubMed  CAS  Google Scholar 

  • Lynch HT et al (1966) Hereditary factors in cancer. Study of two large midwestern kindreds. Arch Intern Med 117(2):206–212

    PubMed  CAS  Google Scholar 

  • Lynch HT et al (1985) Hereditary nonpolyposis colorectal cancer (Lynch syndromes I and II. I. Clinical description of resource). Cancer 56(4):934–938

    PubMed  CAS  Google Scholar 

  • Lynch HT et al (1993) Genetics, natural history, tumor spectrum, and pathology of hereditary nonpolyposis colorectal cancer: an updated review. Gastroenterology 104(5):1535–1549

    PubMed  CAS  Google Scholar 

  • Lynch ED et al (1997) Inherited mutations in PTEN that are associated with breast cancer, cowden disease, and juvenile polyposis. Am J Hum Genet 61(6):1254–1260

    PubMed  CAS  Google Scholar 

  • Lynch HT et al (2011) Lynch syndrome-associated extracolonic tumors are rare in two extended families with the same EPCAM deletion. Am J Gastroenterol 106(10):1829–1836

    PubMed  CAS  Google Scholar 

  • Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273(22):13375–13378

    PubMed  CAS  Google Scholar 

  • Markowitz SD, Roberts AB (1996) Tumor suppressor activity of the TGF-beta pathway in human cancers. Cytokine Growth Factor Rev 7(1):93–102

    PubMed  CAS  Google Scholar 

  • Markowitz S et al (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268(5215):1336–1338

    PubMed  CAS  Google Scholar 

  • Marsh DJ et al (1997) Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat Genet 16(4):333–334

    PubMed  CAS  Google Scholar 

  • Marsh DJ et al (1998) Germline PTEN mutations in Cowden syndrome-like families. J Med Genet 35(11):881–885

    PubMed  CAS  Google Scholar 

  • Marsischky GT et al (1996) Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev 10(4):407–420

    PubMed  CAS  Google Scholar 

  • Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103(2):295–309

    PubMed  CAS  Google Scholar 

  • Mehlen P et al (1998) The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis. Nature 395(6704):801–804

    PubMed  CAS  Google Scholar 

  • Menko FH et al (2008) Variable phenotypes associated with 10q23 microdeletions involving the PTEN and BMPR1A genes. Clin Genet 74(2):145–154

    PubMed  CAS  Google Scholar 

  • Migliore L et al (2011) Genetics, cytogenetics, and epigenetics of colorectal cancer. J Biomed Biotechnol 2011:792362

    PubMed  Google Scholar 

  • Miyaki M et al (1997) Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet 17(3):271–272

    PubMed  CAS  Google Scholar 

  • Miyaki M et al (1999) Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene 18(20):3098–3103

    PubMed  CAS  Google Scholar 

  • Miyazono K (1999) Signal transduction by bone morphogenetic protein receptors: functional roles of Smad proteins. Bone 25(1):91–93

    PubMed  CAS  Google Scholar 

  • Miyoshi Y et al (1992) Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet 1(4):229–233

    PubMed  CAS  Google Scholar 

  • Modrich P (1991) Mechanisms and biological effects of mismatch repair. Annu Rev Genet 25:229–253

    PubMed  CAS  Google Scholar 

  • Morin PJ et al (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275(5307):1787–1790

    PubMed  CAS  Google Scholar 

  • Munemitsu S et al (1994) The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res 54(14):3676–3681

    PubMed  CAS  Google Scholar 

  • Munemitsu S et al (1995) Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci U S A 92(7):3046–3050

    PubMed  CAS  Google Scholar 

  • Nagase H, Nakamura Y (1993) Mutations of the APC (adenomatous polyposis coli) gene. Hum Mutat 2(6):425–434

    PubMed  CAS  Google Scholar 

  • Naguib A et al (2011) Alterations in PTEN and PIK3CA in colorectal cancers in the EPIC Norfolk study: associations with clinicopathological and dietary factors. BMC Cancer 11:123

    PubMed  CAS  Google Scholar 

  • Nakajima G et al (2006) Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genomics Proteomics 3(5):317–324

    PubMed  CAS  Google Scholar 

  • Namiki M et al (1997) A kinase domain-truncated type I receptor blocks bone morphogenetic protein-2-induced signal transduction in C2C12 myoblasts. J Biol Chem 272(35):22046–22052

    PubMed  CAS  Google Scholar 

  • Natsume T et al (1997) Interaction between soluble type I receptor for bone morphogenetic protein and bone morphogenetic protein-4. J Biol Chem 272(17):11535–11540

    PubMed  CAS  Google Scholar 

  • Negri FV et al (2010) PTEN status in advanced colorectal cancer treated with cetuximab. Br J Cancer 102(1):162–164

    PubMed  CAS  Google Scholar 

  • Neufeld KL et al (2000) APC-mediated downregulation of beta-catenin activity involves nuclear sequestration and nuclear export. EMBO Rep 1(6):519–523

    PubMed  CAS  Google Scholar 

  • Nicolaides NC et al (1994) Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371(6492):75–80

    PubMed  CAS  Google Scholar 

  • Nicolaides NC et al (1998) A naturally occurring hPMS2 mutation can confer a dominant negative mutator phenotype. Mol Cell Biol 18(3):1635–1641

    PubMed  CAS  Google Scholar 

  • Nieminen TT et al (2011) BMPR1A mutations in hereditary nonpolyposis colorectal cancer without mismatch repair deficiency. Gastroenterology 141(1):e23–e26

    PubMed  Google Scholar 

  • Nishisho I et al (1991) Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253(5020):665–669

    PubMed  CAS  Google Scholar 

  • Ohmiya N et al (2001) Germline and somatic mutations in hMSH6 and hMSH3 in gastrointestinal cancers of the microsatellite mutator phenotype. Gene 272(1–2):301–313

    PubMed  CAS  Google Scholar 

  • Ohtsubo T et al (2000) Identification of human MutY homolog (hMYH) as a repair enzyme for 2-hydroxyadenine in DNA and detection of multiple forms of hMYH located in nuclei and mitochondria. Nucleic Acids Res 28(6):1355–1364

    PubMed  CAS  Google Scholar 

  • Olschwang S et al (1998) PTEN germ-line mutations in juvenile polyposis coli. Nat Genet 18(1):12–14

    PubMed  CAS  Google Scholar 

  • Papadopoulos N et al (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263(5153):1625–1629

    PubMed  CAS  Google Scholar 

  • Parsons R et al (1995) Mismatch repair deficiency in phenotypically normal human cells. Science 268(5211):738–740

    PubMed  CAS  Google Scholar 

  • Peltomaki P (2005) Lynch syndrome genes. Fam Cancer 4(3):227–232

    PubMed  Google Scholar 

  • Peltomaki P, Vasen HF (1997) Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology 113(4):1146–1158

    PubMed  CAS  Google Scholar 

  • Peltomaki P et al (1993) Genetic mapping of a locus predisposing to human colorectal cancer. Science 260(5109):810–812

    PubMed  CAS  Google Scholar 

  • Peutz J (1921) Ned Tijdschr Geneeskd 10:134

    Google Scholar 

  • Plaschke J et al (2004) Lower incidence of colorectal cancer and later age of disease onset in 27 families with pathogenic MSH6 germline mutations compared with families with MLH1 or MSH2 mutations: the German Hereditary Nonpolyposis Colorectal Cancer Consortium. J Clin Oncol 22(22):4486–4494

    PubMed  CAS  Google Scholar 

  • Powell SM et al (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359(6392):235–237

    PubMed  CAS  Google Scholar 

  • Qian J et al (2007) Caspase cleavage of the APC tumor suppressor and release of an amino-terminal domain is required for the transcription-independent function of APC in apoptosis. Oncogene 26(33):4872–4876

    PubMed  CAS  Google Scholar 

  • Ricci-Vitiani L et al (2009) Colon cancer stem cells. J Mol Med (Berl) 87(11):1097–1104

    Google Scholar 

  • Riegert-Johnson DL et al (2010) Cancer and Lhermitte-Duclos disease are common in cowden syndrome patients. Hered Cancer Clin Pract 8(1):6

    PubMed  Google Scholar 

  • Riggins GJ et al (1997) Frequency of Smad gene mutations in human cancers. Cancer Res 57(13):2578–2580

    PubMed  CAS  Google Scholar 

  • Rosin-Arbesfeld R, Townsley F, Bienz M (2000) The APC tumour suppressor has a nuclear export function. Nature 406(6799):1009–1012

    PubMed  CAS  Google Scholar 

  • Rothhammer T et al (2005) Bone morphogenic proteins are overexpressed in malignant melanoma and promote cell invasion and migration. Cancer Res 65(2):448–456

    PubMed  CAS  Google Scholar 

  • Samowitz WS et al (1999) Beta-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas. Cancer Res 59(7):1442–1444

    PubMed  CAS  Google Scholar 

  • Sampson JR et al (2003) Autosomal recessive colorectal adenomatous polyposis due to inherited mutations of MYH. Lancet 362(9377):39–41

    PubMed  CAS  Google Scholar 

  • Sansal I, Sellers WR (2004) The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 22(14):2954–2963

    PubMed  CAS  Google Scholar 

  • Satoh S et al (2000) AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet 24(3):245–250

    PubMed  CAS  Google Scholar 

  • Scott RJ et al (2001) Hereditary nonpolyposis colorectal cancer in 95 families: differences and similarities between mutation-positive and mutation-negative kindreds. Am J Hum Genet 68(1):118–127

    PubMed  CAS  Google Scholar 

  • Shaw RJ et al (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 101(10): 3329–3335

    PubMed  CAS  Google Scholar 

  • Shtutman M et al (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A 96(10):5522–5527

    PubMed  CAS  Google Scholar 

  • Sieber OM et al (2003) Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N Engl J Med 348(9):791–799

    PubMed  Google Scholar 

  • Slaby O et al (2007) Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 72(5–6):397–402

    PubMed  CAS  Google Scholar 

  • Slupska MM et al (1999) Functional expression of hMYH, a human homolog of the Escherichia coli MutY protein. J Bacteriol 181(19):6210–6213

    PubMed  CAS  Google Scholar 

  • Smilow PC, Pryor CA Jr, Swinton NW (1966) Juvenile polyposis coli. A report of three patients in three generations of one family. Dis Colon Rectum 9(4):248–254

    PubMed  CAS  Google Scholar 

  • Smith KJ et al (1994) Wild-type but not mutant APC associates with the microtubule cytoskeleton. Cancer Res 54(14):3672–3675

    PubMed  CAS  Google Scholar 

  • Soker S et al (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92(6):735–745

    PubMed  CAS  Google Scholar 

  • Solomon E et al (1987) Chromosome 5 allele loss in human colorectal carcinomas. Nature 328(6131):616–619

    PubMed  CAS  Google Scholar 

  • Spirio L et al (1993) Alleles of the APC gene: an attenuated form of familial polyposis. Cell 75(5):951–957

    PubMed  CAS  Google Scholar 

  • Stambolic V et al (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95(1):29–39

    PubMed  CAS  Google Scholar 

  • Steigerwald K et al (2005) The APC tumor suppressor promotes transcription-independent apoptosis in vitro. Mol Cancer Res 3(2):78–89

    PubMed  CAS  Google Scholar 

  • Streisinger G et al (1966) Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. Cold Spring Harb Symp Quant Biol 31:77–84

    PubMed  CAS  Google Scholar 

  • Stryker SJ et al (1987) Natural history of untreated colonic polyps. Gastroenterology 93(5): 1009–1013

    PubMed  CAS  Google Scholar 

  • Subramony C et al (1994) Familial juvenile polyposis. Study of a kindred: evolution of polyps and relationship to gastrointestinal carcinoma. Am J Clin Pathol 102(1):91–97

    PubMed  CAS  Google Scholar 

  • Sun H et al (1999) PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci U S A 96(11):6199–6204

    PubMed  CAS  Google Scholar 

  • Suter CM, Martin DI, Ward RL (2004) Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet 36(5):497–501

    PubMed  CAS  Google Scholar 

  • Takagi Y et al (1998) Somatic alterations of the SMAD-2 gene in human colorectal cancers. Br J Cancer 78(9):1152–1155

    PubMed  CAS  Google Scholar 

  • Takao M et al (1999) Differential subcellular localization of human MutY homolog (hMYH) and the functional activity of adenine:8-oxoguanine DNA glycosylase. Nucleic Acids Res 27(18):3638–3644

    PubMed  CAS  Google Scholar 

  • Tan MH et al (2012) Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res 18(2):400–407

    PubMed  CAS  Google Scholar 

  • ten Dijke P et al (2003) Controlling cell fate by bone morphogenetic protein receptors. Mol Cell Endocrinol 211(1–2):105–113

    PubMed  Google Scholar 

  • Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398(6726):422–426

    PubMed  CAS  Google Scholar 

  • Thawani JP et al (2010) Bone morphogenetic proteins and cancer: review of the literature. Neurosurgery 66(2):233–246; discussion 246

    PubMed  Google Scholar 

  • Theriault BL et al (2007) BMP4 induces EMT and Rho GTPase activation in human ovarian cancer cells. Carcinogenesis 28(6):1153–1162

    PubMed  CAS  Google Scholar 

  • Thompson E et al (2004) Hereditary non-polyposis colorectal cancer and the role of hPMS2 and hEXO1 mutations. Clin Genet 65(3):215–225

    PubMed  CAS  Google Scholar 

  • Tsuchiya R, Fujisawa N (1999) Historical survey of carcinoma of the pancreas. J Hepatobiliary Pancreat Surg 6(2):165–170

    PubMed  CAS  Google Scholar 

  • Umar A et al (2004) Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96(4):261–268

    PubMed  CAS  Google Scholar 

  • Valle L et al (2007) Clinicopathologic and pedigree differences in amsterdam I-positive hereditary nonpolyposis colorectal cancer families according to tumor microsatellite instability status. J Clin Oncol 25(7):781–786

    PubMed  CAS  Google Scholar 

  • Vasen HF et al (1996) Cancer risk in families with hereditary nonpolyposis colorectal cancer diagnosed by mutation analysis. Gastroenterology 110(4):1020–1027

    PubMed  CAS  Google Scholar 

  • Vasen HF et al (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 116(6):1453–1456

    PubMed  CAS  Google Scholar 

  • Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799

    PubMed  CAS  Google Scholar 

  • Vogelstein B et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319(9):525–532

    PubMed  CAS  Google Scholar 

  • Wall ME, Wani MC (1995) Camptothecin and taxol: discovery to clinic—thirteenth Bruce F. Cain Memorial Award Lecture. Cancer Res 55(4):753–760

    PubMed  CAS  Google Scholar 

  • Wang ZJ et al (1998) Genetic pathways of colorectal carcinogenesis rarely involve the PTEN and LKB1 genes outside the inherited hamartoma syndromes. Am J Pathol 153(2):363–366

    PubMed  CAS  Google Scholar 

  • Warthin A (1913) Heredity with reference to carcinoma. Arch Intern Med 12:546–555

    Google Scholar 

  • Woods A et al (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13(22):2004–2008

    PubMed  CAS  Google Scholar 

  • Wu Y et al (2001) Germline mutations of EXO1 gene in patients with hereditary nonpolyposis colorectal cancer (HNPCC) and atypical HNPCC forms. Gastroenterology 120(7):1580–1587

    PubMed  CAS  Google Scholar 

  • Yan H et al (2000) Conversion of diploidy to haploidy. Nature 403(6771):723–724

    PubMed  CAS  Google Scholar 

  • Zhang T et al (2001) Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res 61(24):8664–8667

    PubMed  CAS  Google Scholar 

  • Zhang H et al (2007) ErbB receptors: from oncogenes to targeted cancer therapies. J Clin Invest 117(8):2051–2058

    PubMed  CAS  Google Scholar 

  • Zhou XP et al (2001) Germline mutations in BMPR1A/ALK3 cause a subset of cases of juvenile polyposis syndrome and of Cowden and Bannayan-Riley-Ruvalcaba syndromes. Am J Hum Genet 69(4):704–711

    PubMed  CAS  Google Scholar 

  • Zimmerman M (2003) In: Aufderheide A (ed) The scientific study of mummies. Cambridge University Press: Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Groden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hankey, W., Groden, J. (2013). The Genetics of Colorectal Cancer. In: Haigis, Ph.D., K. (eds) Molecular Pathogenesis of Colorectal Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8412-7_1

Download citation

Publish with us

Policies and ethics