Recent Advances in the Genetics of Polycystic Ovary Syndrome

  • Michelle R. Jones
  • Ning Xu
  • Mark O. Goodarzi


Polycystic ovary syndrome (PCOS) is a complex and heterogeneous disorder. Its multifactorial etiology is underpinned by a complex genetic architecture that has only recently begun to be elucidated. Candidate-gene analyses characterized this field for several years; a limited number of genes have been identified as PCOS-risk loci or as genetic modifiers of component phenotypes of PCOS. Recent advances in technology have allowed high-throughput genotyping methods to be applied in very large case/control cohorts, transforming the genetic understanding of several common, complex disorders, including PCOS. Two genome-wide association studies published to date have robustly identified about a dozen susceptibility loci for PCOS. In particular, the DENND1A locus has been associated with PCOS in multiple diverse cohorts. Epigenetic investigations are now being conducted in animal models and human subjects with PCOS, with great potential for novel insights into the pathogenesis of the syndrome. Identification of PCOS susceptibility genes will expand our understanding of pathways and processes implicated in the syndrome’s etiology, allowing development of new diagnostic and treatment modalities.


Granulosa Cell PCOS Patient PCOS Woman Discovery Cohort Human Granulosa Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cooper HE, Spellacy WE, Prem KA, Cohen WD. Hereditary factors in Stein-Leventhal syndrome. Am J Obstet Gynecol. 1968;100:371–82.PubMedGoogle Scholar
  2. 2.
    Ferriman D, Purdie AW. The inheritance of polycystic ovarian disease and a possible relationship to premature balding. Clin Endocrinol. 1979;11:291–300.CrossRefGoogle Scholar
  3. 3.
    Hague WH, Adams J, Reeders ST, Peto TEA, Jacobs HS. Familial polycystic ovaries: a genetic disease? Clin Endocrinol. 1988;29:593–605.CrossRefGoogle Scholar
  4. 4.
    Govind A, Obhrai MS, Clayton RN. Polycystic ovaries are inherited as an autosomal dominant trait: analysis of 29 polycystic ovary syndrome and 10 control families. J Clin Endocrinol Metab. 1999;84:38–43.PubMedCrossRefGoogle Scholar
  5. 5.
    Carey AH, Chan KL, Short F, White D, Williamson R, Franks S. Evidence for a single gene effect causing polycystic ovaries and male pattern baldness. Clin Endocrinol (Oxf). 1993;38:653–8.CrossRefGoogle Scholar
  6. 6.
    Kahsar-Miller M, Azziz R. Heritability and the risk of developing androgen excess. J Steroid Biochem Mol Biol. 1999;69:261–8.CrossRefGoogle Scholar
  7. 7.
    Kahsar-Miller MD, Nixon C, Boots LR, Go RC, Azziz R. Prevalence of polycystic ovary syndrome (PCOS) in first-degree relatives of patients with PCOS. Fertil Steril. 2001;75:53–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Legro RS, Driscoll D, Strauss JF, Fox J, Dunaif A. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc Natl Acad Sci U S A. 1998;95:14956–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Jahanfar S, Eden JA, Warren P, Seppala M, Nguyen TV. A twin study of polycystic ovary syndrome. Fertil Steril. 1995;63:478–86.PubMedGoogle Scholar
  10. 10.
    Jahanfar S, Eden JA, Nguyen T, Wang XL, Wilcken DE. A twin study of polycystic ovary syndrome and lipids. Gynecol Endocrinol. 1997;11:111–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Vink JM, Sadrzadeh S, Lambalk CB, Boomsma DI. Heritability of polycystic ovary syndrome in a Dutch twin-family study. J Clin Endocrinol Metab. 2006;91:2100–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Kuijper EA, Vink JM, Lambalk CB, Boomsma DI. Prevalence of polycystic ovary syndrome in women from opposite-sex twin pairs. J Clin Endocrinol Metab. 2009;94:1987–90.PubMedCrossRefGoogle Scholar
  13. 13.
    Goodarzi MO. Looking for polycystic ovary syndrome genes: rational and best strategy. Semin Reprod Med. 2008;26:5–13.PubMedCrossRefGoogle Scholar
  14. 14.
    Goodarzi MO, Louwers YV, Taylor KD, Jones MR, Cui J, Kwon S, et al. Replication of association of a novel insulin receptor gene polymorphism with polycystic ovary syndrome. Fertil Steril. 2011;95:1736–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Chua AK, Azziz R, Goodarzi MO. Association study of CYP17 and HSD11B1 in polycystic ovary syndrome utilizing comprehensive gene coverage. Mol Hum Reprod. 2012;18:320–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Kosova G, Urbanek M. Genetics of the polycystic ovary syndrome. Mol Cell Endocrinol. 2013;373(1–2):29–38.PubMedCrossRefGoogle Scholar
  17. 17.
    Urbanek M. The genetics of the polycystic ovary syndrome. Nat Clin Pract Endocrinol Metab. 2007;3:103–11.PubMedCrossRefGoogle Scholar
  18. 18.
    Deligeoroglou E, Kouskouti C, Christopoulos P. The role of genes in the polycystic ovary syndrome: predisposition and mechanisms. Gynecol Endocrinol. 2009;25:603–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Dasgupta S, Reddy BM. Present status of understanding on the genetic etiology of polycystic ovary syndrome. J Postgrad Med. 2008;54:115–25.PubMedCrossRefGoogle Scholar
  20. 20.
    Goodarzi MO, Antoine HJ, Azziz R. Genes for enzymes regulating dehydroepiandrosterone sulfonation are associated with levels of dehydroepiandrosterone sulfate in polycystic ovary syndrome. J Clin Endocrinol Metab. 2007;92:2659–64.PubMedCrossRefGoogle Scholar
  21. 21.
    Schweighofer N, Lerchbaum E, Trummer O, Schwetz V, Pilz S, Pieber TR, et al. Androgen levels and metabolic parameters are associated with a genetic variant of F13A1 in women with polycystic ovary syndrome. Gene. 2012;504:133–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Urbanek M, Legro RS, Driscoll DA, Azziz R, Ehrmann DA, Norman RJ, et al. Thirty-seven candidate genes for polycystic ovary syndrome: strongest evidence for linkage is with follistatin. Proc Natl Acad Sci U S A. 1999;96:8573–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Urbanek M, Woodroffe A, Ewens KG, Diamanti-Kandarakis E, Legro RS, Strauss JF, et al. Candidate gene region for polycystic ovary syndrome on chromosome 19p13.2. J Clin Endocrinol Metab. 2005;90:6623–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Stewart DR, Dombroski B, Urbanek M, Ankener KG, Ewens KG, Wood JR, et al. Fine mapping of genetic susceptibility to polycystic ovary syndrome on chromosome 19p13.2 and tests for regulatory activity. J Clin Endocrinol Metab. 2006;91:4112–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Ewens KG, Stewart DR, Ankener W, Urbanek M, McAllister JM, Chen C, et al. Family-based analysis of candidate genes for polycystic ovary syndrome. J Clin Endocrinol Metab. 2010;95:2306–15.PubMedCrossRefGoogle Scholar
  26. 26.
    Raja-Khan N, Kunselman AR, Demers LM, Ewens KG, Spielman RS, Legro RS. A variant in the fibrillin-3 gene is associated with TGF-beta and inhibin B levels in women with polycystic ovary syndrome. Fertil Steril. 2010;94:2916–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Urbanek M, Sam S, Legro RS, Dunaif A. Identification of a polycystic ovary syndrome susceptibility variant in fibrillin-3 and association with a metabolic phenotype. J Clin Endocrinol Metab. 2007;92:4191–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Prodoehl MJ, Hatzirodos N, Irving-Rodgers HF, Zhao ZZ, Painter JN, Hickey TE, et al. Genetic and gene expression analyses of the polycystic ovary syndrome candidate gene fibrillin-3 and other fibrillin family members in human ovaries. Mol Hum Reprod. 2009;15:829–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Xita N, Georgiou I, Tsatsoulis A, Kourtis A, Kukuvitis A, Panidis D. A polymorphism in the resistin gene promoter is associated with body mass index in women with polycystic ovary syndrome. Fertil Steril. 2004;82:1466–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Urbanek M, Du Y, Silander K, Collins FS, Steppan CM, Strauss JF, et al. Variation in resistin gene not associated with polycystic ovary syndrome. Diabetes. 2003;52:214–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Sorbara LR, Tang Z, Cama A, Xia J, Schenker E, Kohanski RA, et al. Absence of insulin receptor gene mutations in three insulin-resistant women with the polycystic ovary syndrome. Metabolism. 1994;43:1568–74.PubMedCrossRefGoogle Scholar
  32. 32.
    Talbot JA, Bicknell EJ, Rajkhowa M, Krook A, O’Rahilly S, Clayton RN. Molecular scanning of the insulin receptor gene in women with polycystic ovarian syndrome. J Clin Endocrinol Metab. 1996;81:1979–83.PubMedCrossRefGoogle Scholar
  33. 33.
    Conway GS, Avey C, Rumsby G. The tyrosine kinase domain of the insulin receptor gene is normal in women with hyperinsulinaemia and polycystic ovary syndrome. Hum Reprod. 1994;9:1681–3.PubMedGoogle Scholar
  34. 34.
    Tucci S, Futterweit W, Concepcion ES, Greenberg DA, Villanueva R, Davies TF, et al. Evidence for association of polycystic ovary syndrome in Caucasian women with a marker at the insulin receptor gene locus. J Clin Endocrinol Metab. 2001;86:446–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Siegel S, Futterweit W, Davies TF, Concepcion ES, Greenberg DA, Villanueva R, et al. A C/T single nucleotide polymorphism at the tyrosine kinase domain of the insulin receptor domain is associated with polycystic ovary syndrome. Fertil Steril. 2002;78:1240–3.PubMedCrossRefGoogle Scholar
  36. 36.
    Chen ZJ, Shi YH, Zhao YR, Li Y, Tang R, Zhao LX, et al. Correlation between single nucleotide polymorphism of insulin receptor gene with polycystic ovary syndrome. Zhonghua Fu Chan Ke Za Zhi. 2004;39:582–5.PubMedGoogle Scholar
  37. 37.
    Jin L, Zhu XM, Luo Q, Qian Y, Jin F, Huang HF. A novel SNP at exon 17 of INSR is associated with decreased insulin sensitivity in Chinese women with PCOS. Mol Hum Reprod. 2006;12:151–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Lee EJ, Oh B, Lee JY, Kimm K, Lee SH, Baek KH. A novel single nucleotide polymorphism of INSR gene for polycystic ovary syndrome. Fertil Steril. 2008;89:1213–20.PubMedCrossRefGoogle Scholar
  39. 39.
    Mukherjee S, Shaikh N, Khavale S, Shinde G, Meherji P, Shah N, et al. Genetic variation in exon 17 of INSR is associated with insulin resistance and hyperandrogenemia among lean Indian women with polycystic ovary syndrome. Eur J Endocrinol. 2009;160:855–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Lee EJ, Yoo KJ, Kim SJ, Lee SH, Cha KY, Baek KH. Single nucleotide polymorphism in exon 17 of the insulin receptor gene is not associated with polycystic ovary syndrome in a Korean population. Fertil Steril. 2006;86:380–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Xu X, Zhao H, Shi Y, You L, Bian Y, Zhao Y, et al. Family association study between INSR gene polymorphisms and PCOS in Han Chinese. Reprod Biol Endocrinol. 2011;9:76.PubMedCrossRefGoogle Scholar
  42. 42.
    Unsal T, Konac E, Yesilkaya E, Yilmaz A, Bideci A, Ilke Onen H, et al. Genetic polymorphisms of FSHR, CYP17, CYP1A1, CAPN10, INSR, SERPINE1 genes in adolescent girls with polycystic ovary syndrome. J Assist Reprod Genet. 2009;26:205–16.PubMedCrossRefGoogle Scholar
  43. 43.
    Shi Y, Zhao H, Cao Y, Yang D, Li Z, Zhang B, et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012;44:1020–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Doniach T, Hodgkin J. A sex-determining gene, fem-1, required for both male and hermaphrodite development in Caenorhabditis elegans. Dev Biol. 1984;106:223–35.PubMedCrossRefGoogle Scholar
  45. 45.
    Maher JF, Hines RS, Futterweit W, Crawford S, Lu D, Shen P, et al. FEM1A is a candidate gene for polycystic ovary syndrome. Gynecol Endocrinol. 2005;21:330–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Goodarzi MO, Maher JF, Cui J, Guo X, Taylor KD, Azziz R. FEM1A and FEM1B: novel candidate genes for polycystic ovary syndrome. Hum Reprod. 2008;23:2842–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Jones MR, Italiano L, Wilson SG, Mullin BH, Mead R, Dudbridge F, et al. Polymorphism in HSD17B6 is associated with key features of PCOS. Fertil Steril. 2006;86:1438–46.PubMedCrossRefGoogle Scholar
  48. 48.
    Jones MR, Mathur R, Cui J, Guo X, Azziz R, Goodarzi MO. Independent confirmation of association between metabolic phenotypes of polycystic ovary syndrome and variation in the type 6 17beta-hydroxysteroid dehydrogenase gene. J Clin Endocrinol Metab. 2009;94:5034–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Ke L, Che YN, Cao YX, Wu XK, Hu YL, Sun HX, et al. Polymorphisms of the HSD17B6 and HSD17B5 genes in Chinese women with polycystic ovary syndrome. J Womens Health (Larchmt). 2010;19:2227–32.CrossRefGoogle Scholar
  50. 50.
    Goodarzi MO, Xu N, Cui J, Guo X, Chen YI, Azziz R. Small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA), a candidate gene for polycystic ovary syndrome. Hum Reprod. 2008;23:1214–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R. Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol. 2011;7:219–31.PubMedCrossRefGoogle Scholar
  52. 52.
    Mani H, Levy MJ, Davies MJ, Morris DH, Gray LJ, Bankart J, et al. Diabetes and cardiovascular events in women with polycystic ovary syndrome; a 20 years retrospective cohort study. Clin Endocrinol (Oxf). 2013;78(6):926–34.CrossRefGoogle Scholar
  53. 53.
    Barber TM, Bennett AJ, Groves CJ, Sovio U, Ruokonen A, Martikainen H, et al. Association of variants in the fat mass and obesity associated (FTO) gene with polycystic ovary syndrome. Diabetologia. 2008;51:1153–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Kowalska I, Malecki MT, Straczkowski M, Skupien J, Karczewska-Kupczewska M, Nikolajuk A, et al. The FTO gene modifies weight, fat mass and insulin sensitivity in women with polycystic ovary syndrome, where its role may be larger than in other phenotypes. Diabetes Metab. 2009;35:328–31.PubMedCrossRefGoogle Scholar
  55. 55.
    Tan S, Scherag A, Janssen OE, Hahn S, Lahner H, Dietz T, et al. Large effects on body mass index and insulin resistance of fat mass and obesity associated gene (FTO) variants in patients with polycystic ovary syndrome (PCOS). BMC Med Genet. 2010;11:12.PubMedCrossRefGoogle Scholar
  56. 56.
    Ewens KG, Jones MR, Ankener W, Stewart DR, Urbanek M, Dunaif A, et al. FTO and MC4R gene variants are associated with obesity in polycystic ovary syndrome. PLoS One. 2011;6:e16390.PubMedCrossRefGoogle Scholar
  57. 57.
    Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–94.PubMedCrossRefGoogle Scholar
  58. 58.
    Yang J, Loos RJ, Powell JE, Medland SE, Speliotes EK, Chasman DI, et al. FTO genotype 1s associated with phenotypic variability of body mass index. Nature. 2012;490:267–72.PubMedCrossRefGoogle Scholar
  59. 59.
    Frayling TM, Ong K. Piecing together the FTO jigsaw. Genome Biol. 2011;12:104.PubMedCrossRefGoogle Scholar
  60. 60.
    Wojciechowski P, Lipowska A, Rys P, Ewens KG, Franks S, Tan S, et al. Impact of FTO genotypes on BMI and weight in polycystic ovary syndrome: a systematic review and meta-analysis. Diabetologia. 2012;55:2636–45.PubMedCrossRefGoogle Scholar
  61. 61.
    Wood JR, Ho CK, Nelson-Degrave VL, McAllister JM, Strauss JF. The molecular signature of polycystic ovary syndrome (PCOS) theca cells defined by gene expression profiling. J Reprod Immunol. 2004;63:51–60.PubMedCrossRefGoogle Scholar
  62. 62.
    Corton M, Botella-Carretero JI, Benguria A, Villuendas G, Zaballos A, San Millan JL, et al. Differential gene expression profile in omental adipose tissue in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2007;92:328–37.PubMedCrossRefGoogle Scholar
  63. 63.
    Borro M, Gentile G, Stigliano A, Misiti S, Toscano V, Simmaco M. Proteomic analysis of peripheral T lymphocytes, suitable circulating biosensors of strictly related diseases. Clin Exp Immunol. 2007;150:494–501.PubMedCrossRefGoogle Scholar
  64. 64.
    Chazenbalk G, Chen YH, Heneidi S, Lee JM, Pall M, Chen YD, et al. Abnormal expression of genes involved in inflammation, lipid metabolism, and Wnt signaling in the adipose tissue of polycystic ovary syndrome. J Clin Endocrinol Metab. 2012;97:E765–70.PubMedCrossRefGoogle Scholar
  65. 65.
    Jones MR, Chua A, Chen YD, Li X, Krauss RM, Rotter JI, et al. Harnessing expression data to identify novel candidate genes in polycystic ovary syndrome. PLoS One. 2011;6:e20120.PubMedCrossRefGoogle Scholar
  66. 66.
    Aguilera O, Fraga MF, Ballestar E, Paz MF, Herranz M, Espada J, et al. Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene. 2006;25:4116–21.PubMedCrossRefGoogle Scholar
  67. 67.
    Jee S, Hwang D, Seo S, Kim Y, Kim C, Kim B, et al. Microarray analysis of insulin-regulated gene expression in the liver: the use of transgenic mice co-expressing insulin-siRNA and human IDE as an animal model. Int J Mol Med. 2007;20:829–35.PubMedGoogle Scholar
  68. 68.
    Jansen E, Laven JS, Dommerholt HB, Polman J, van Rijt C, van den Hurk C, et al. Abnormal gene expression profiles in human ovaries from polycystic ovary syndrome patients. Mol Endocrinol. 2004;18:3050–63.PubMedCrossRefGoogle Scholar
  69. 69.
    Beshay VE, Havelock JC, Sirianni R, Ye P, Suzuki T, Rainey WE, et al. The mechanism for protein kinase C inhibition of androgen production and 17alpha-hydroxylase expression in a theca cell tumor model. J Clin Endocrinol Metab. 2007;92:4802–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Jones MR, Chazenbalk G, Xu N, Chua AK, Eigler T, Mengesha E, et al. Steroidogenic regulatory factor FOS is underexpressed in polycystic ovary syndrome (PCOS) adipose tissue and genetically associated with PCOS susceptibility. J Clin Endocrinol Metab. 2012;97:E1750–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26:76–80.PubMedCrossRefGoogle Scholar
  72. 72.
    Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003;52:568–72.PubMedCrossRefGoogle Scholar
  73. 73.
    Imamura M, Maeda S. Genetics of type 2 diabetes: the GWAS era and future perspectives. Endocr J. 2011;58:723–39.PubMedCrossRefGoogle Scholar
  74. 74.
    Jones MR, Chua AK, Mengesha EA, Taylor KD, Chen YD, Li X, et al. Metabolic and cardiovascular genes in polycystic ovary syndrome: a candidate-wide association study (CWAS). Steroids. 2012;77:317–22.PubMedCrossRefGoogle Scholar
  75. 75.
    Chen ZJ, Zhao H, He L, Shi Y, Qin Y, Shi Y, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet. 2011;43:55–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Lerchbaum E, Trummer O, Giuliani A, Gruber HJ, Pieber TR, Obermayer-Pietsch B. Susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21, and 9q33.3 in a cohort of Caucasian women. Horm Metab Res. 2011;43:743–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Goodarzi MO, Jones MR, Li X, Chua AK, Garcia OA, Chen YD, et al. Replication of association of DENND1A and THADA variants with polycystic ovary syndrome in European cohorts. J Med Genet. 2012;49:90–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Welt CK, Styrkarsdottir U, Ehrmann DA, Thorleifsson G, Arason G, Gudmundsson JA, et al. Variants in DENND1A are associated with polycystic ovary syndrome in women of European ancestry. J Clin Endocrinol Metab. 2012;97:E1342–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Mutharasan P, Galdones E, Penalver Bernabe B, Garcia OA, Jafari N, Shea LD, et al. Evidence for chromosome 2p16.3 polycystic ovary syndrome susceptibility locus in affected women of European ancestry. J Clin Endocrinol Metab. 2012;98:E185–90.PubMedCrossRefGoogle Scholar
  80. 80.
    Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40:638–45.PubMedCrossRefGoogle Scholar
  81. 81.
    Aulchenko YS, Ripatti S, Lindqvist I, Boomsma D, Heid IM, Pramstaller PP, et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet. 2009;41:47–55.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhao H, Xu X, Xing X, Wang J, He L, Shi Y, et al. Family-based analysis of susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Hum Reprod. 2012;27:294–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Eriksen MB, Brusgaard K, Andersen M, Tan Q, Altinok ML, Gaster M, et al. Association of polycystic ovary syndrome susceptibility single nucleotide polymorphism rs2479106 and PCOS in Caucasian patients with PCOS or hirsutism as referral diagnosis. Eur J Obstet Gynecol Reprod Biol. 2012;163:39–42.PubMedCrossRefGoogle Scholar
  84. 84.
    Azziz R, Dumesic DA, Goodarzi MO. Polycystic ovary syndrome: an ancient disorder? Fertil Steril. 2011;95:1544–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Strauss JF, McAllister JM, Urbanek M. Persistence pays off for PCOS gene prospectors. J Clin Endocrinol Metab. 2012;97:2286–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Cui L, Zhao H, Zhang B, Qu Z, Liu J, Liang X, et al. Genotype-phenotype correlations of PCOS susceptibility SNPs identified by GWAS in a large cohort of Han Chinese women. Hum Reprod. 2012;28:538–44.PubMedCrossRefGoogle Scholar
  87. 87.
    Kerns SL, Ostrer H, Stock R, Li W, Moore J, Pearlman A, et al. Genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with the development of erectile dysfunction in African-American men after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2010;78:1292–300.PubMedCrossRefGoogle Scholar
  88. 88.
    Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.CrossRefGoogle Scholar
  89. 89.
    Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Weedon MN, Lettre G, Freathy RM, Lindgren CM, Voight BF, Perry JR, et al. A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat Genet. 2007;39:1245–50.PubMedCrossRefGoogle Scholar
  91. 91.
    Goodarzi MO, Korenman SG. The importance of insulin resistance in polycystic ovary syndrome. Fertil Steril. 2003;80:255–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Muhonen P, Holthofer H. Epigenetic and microRNA-mediated regulation in diabetes. Nephrol Dial Transplant. 2009;24:1088–96.PubMedCrossRefGoogle Scholar
  93. 93.
    Beisel C, Paro R. Silencing chromatin: comparing modes and mechanisms. Nat Rev Genet. 2011;12:123–35.PubMedCrossRefGoogle Scholar
  94. 94.
    Shilatifard A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem. 2006;75:243–69.PubMedCrossRefGoogle Scholar
  95. 95.
    Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science. 2010;330:612–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Tang WY, Ho SM. Epigenetic reprogramming and imprinting in origins of disease. Rev Endocr Metab Disord. 2007;8:173–82.PubMedCrossRefGoogle Scholar
  97. 97.
    Walker CL, Ho SM. Developmental reprogramming of cancer susceptibility. Nat Rev Cancer. 2012;12:479–86.PubMedCrossRefGoogle Scholar
  98. 98.
    Li Z, Huang H. Epigenetic abnormality: a possible mechanism underlying the fetal origin of polycystic ovary syndrome. Med Hypotheses. 2008;70:638–42.PubMedCrossRefGoogle Scholar
  99. 99.
    Abbott DH, Barnett DK, Bruns CM, Dumesic DA. Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome? Hum Reprod Update. 2005;11:357–74.PubMedCrossRefGoogle Scholar
  100. 100.
    Demissie M, Lazic M, Foecking EM, Aird F, Dunaif A, Levine JE. Transient prenatal androgen exposure produces metabolic syndrome in adult female rats. Am J Physiol Endocrinol Metab. 2008;295:E262–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Foecking EM, Szabo M, Schwartz NB, Levine JE. Neuroendocrine consequences of prenatal androgen exposure in the female rat: absence of luteinizing hormone surges, suppression of progesterone receptor gene expression, and acceleration of the gonadotropin-releasing hormone pulse generator. Biol Reprod. 2005;72:1475–83.PubMedCrossRefGoogle Scholar
  102. 102.
    Sullivan SD, Moenter SM. Prenatal androgens alter GABAergic drive to gonadotropin-releasing hormone neurons: implications for a common fertility disorder. Proc Natl Acad Sci U S A. 2004;101:7129–34.PubMedCrossRefGoogle Scholar
  103. 103.
    Dumesic DA, Abbott DH, Padmanabhan V. Polycystic ovary syndrome and its developmental origins. Rev Endocr Metab Disord. 2007;8:127–41.PubMedCrossRefGoogle Scholar
  104. 104.
    Pons D, de Vries FR, van den Elsen PJ, Heijmans BT, Quax PH, Jukema JW. Epigenetic histone acetylation modifiers in vascular remodelling: new targets for therapy in cardiovascular disease. Eur Heart J. 2009;30:266–77.PubMedCrossRefGoogle Scholar
  105. 105.
    Jones RH, Ozanne SE. Intra-uterine origins of type 2 diabetes. Arch Physiol Biochem. 2007;113:25–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Jones RH, Ozanne SE. Fetal programming of glucose-insulin metabolism. Mol Cell Endocrinol. 2009;297:4–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Newbold RR, Padilla-Banks E, Jefferson WN, Heindel JJ. Effects of endocrine disruptors on obesity. Int J Androl. 2008;31:201–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Vickers MH, Krechowec SO, Breier BH. Is later obesity programmed in utero? Curr Drug Targets. 2007;8:923–34.PubMedCrossRefGoogle Scholar
  109. 109.
    Waterland RA. Does nutrition during infancy and early childhood contribute to later obesity via metabolic imprinting of epigenetic gene regulatory mechanisms? Nestle Nutr Workshop Ser Pediatr Program. 2005;56:157–71. discussion 71–4.PubMedCrossRefGoogle Scholar
  110. 110.
    Hilakivi-Clarke L, de Assis S. Fetal origins of breast cancer. Trends Endocrinol Metab. 2006;17:340–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Ho SM, Tang WY, Belmonte de Frausto J, Prins GS. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 2006;66:5624–32.PubMedCrossRefGoogle Scholar
  112. 112.
    Prins GS, Birch L, Tang WY, Ho SM. Developmental estrogen exposures predispose to prostate carcinogenesis with aging. Reprod Toxicol. 2007;23:374–82.PubMedCrossRefGoogle Scholar
  113. 113.
    Prins GS, Tang WY, Belmonte J, Ho SM. Developmental exposure to bisphenol A increases prostate cancer susceptibility in adult rats: epigenetic mode of action is implicated. Fertil Steril. 2008;89:e41.PubMedCrossRefGoogle Scholar
  114. 114.
    Waterland RA. Is epigenetics an important link between early life events and adult disease? Horm Res. 2009;71 Suppl 1:13–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Barker DJ. The developmental origins of adult disease. J Am Coll Nutr. 2004;23:588S–95.PubMedCrossRefGoogle Scholar
  116. 116.
    Xita N, Tsatsoulis A. Fetal origins of the metabolic syndrome. Ann N Y Acad Sci. 2010;1205:148–55.PubMedCrossRefGoogle Scholar
  117. 117.
    Li S, Hansman R, Newbold R, Davis B, McLachlan JA, Barrett JC. Neonatal diethylstilbestrol exposure induces persistent elevation of c-fos expression and hypomethylation in its exon-4 in mouse uterus. Mol Carcinog. 2003;38:78–84.PubMedCrossRefGoogle Scholar
  118. 118.
    Mahoney MM, Padmanabhan V. Developmental programming: impact of fetal exposure to endocrine-disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus. Toxicol Appl Pharmacol. 2010;247:98–104.PubMedCrossRefGoogle Scholar
  119. 119.
    Ma L. Endocrine disruptors in female reproductive tract development and carcinogenesis. Trends Endocrinol Metab. 2009;20:357–63.PubMedCrossRefGoogle Scholar
  120. 120.
    Tut TG, Ghadessy FJ, Trifiro MA, Pinsky L, Yong EL. Long polyglutamine tracts in the androgen receptor are associated with reduced trans-activation, impaired sperm production, and male infertility. J Clin Endocrinol Metab. 1997;82:3777–82.PubMedCrossRefGoogle Scholar
  121. 121.
    Beilin J, Ball EM, Favaloro JM, Zajac JD. Effect of the androgen receptor CAG repeat polymorphism on transcriptional activity: specificity in prostate and non-prostate cell lines. J Mol Endocrinol. 2000;25:85–96.PubMedCrossRefGoogle Scholar
  122. 122.
    Chamberlain NL, Driver ED, Miesfeld RL. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res. 1994;22:3181–6.PubMedCrossRefGoogle Scholar
  123. 123.
    Calvo RM, Asuncion M, Sancho J, San Millan JL, Escobar-Morreale HF. The role of the CAG repeat polymorphism in the androgen receptor gene and of skewed X-chromosome inactivation, in the pathogenesis of hirsutism. J Clin Endocrinol Metab. 2000;85:1735–40.PubMedCrossRefGoogle Scholar
  124. 124.
    Skrgatic L, Baldani DP, Cerne JZ, Ferk P, Gersak K. CAG repeat polymorphism in androgen receptor gene is not directly associated with polycystic ovary syndrome but influences serum testosterone levels. J Steroid Biochem Mol Biol. 2012;128:107–12.PubMedCrossRefGoogle Scholar
  125. 125.
    Schuring AN, Welp A, Gromoll J, Zitzmann M, Sonntag B, Nieschlag E, et al. Role of the CAG repeat polymorphism of the androgen receptor gene in polycystic ovary syndrome (PCOS). Exp Clin Endocrinol Diabetes. 2012;120:73–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Echiburu B, Perez-Bravo F, Maliqueo M, Ladron de Guevara A, Galvez C, Crisosto N, et al. CAG repeat polymorphism of androgen receptor gene and X-chromosome inactivation in daughters of women with polycystic ovary syndrome (PCOS): relationship with endocrine and metabolic parameters. Gynecol Endocrinol. 2012;28:516–20.PubMedCrossRefGoogle Scholar
  127. 127.
    Hickey T, Chandy A, Norman RJ. The androgen receptor CAG repeat polymorphism and X-chromosome inactivation in Australian Caucasian women with infertility related to polycystic ovary syndrome. J Clin Endocrinol Metab. 2002;87:161–5.PubMedCrossRefGoogle Scholar
  128. 128.
    Hickey TE, Legro RS, Norman RJ. Epigenetic modification of the X chromosome influences susceptibility to polycystic ovary syndrome. J Clin Endocrinol Metab. 2006;91:2789–91.PubMedCrossRefGoogle Scholar
  129. 129.
    Shah NA, Antoine HJ, Pall M, Taylor KD, Azziz R, Goodarzi MO. Association of androgen receptor CAG repeat polymorphism and polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93:1939–45.PubMedCrossRefGoogle Scholar
  130. 130.
    Dasgupta S, Sirisha PV, Neelaveni K, Anuradha K, Reddy AG, Thangaraj K, et al. Androgen receptor CAG repeat polymorphism and epigenetic influence among the south Indian women with Polycystic Ovary Syndrome. PLoS One. 2010;5:e12401.PubMedCrossRefGoogle Scholar
  131. 131.
    Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A. 2006;103:1412–7.PubMedCrossRefGoogle Scholar
  132. 132.
    Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466:253–7.PubMedCrossRefGoogle Scholar
  133. 133.
    Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462:315–22.PubMedCrossRefGoogle Scholar
  134. 134.
    Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A. 2000;97:5237–42.PubMedCrossRefGoogle Scholar
  135. 135.
    Woodcock DM, Crowther PJ, Diver WP. The majority of methylated deoxycytidines in human DNA are not in the CpG dinucleotide. Biochem Biophys Res Commun. 1987;145:888–94.PubMedCrossRefGoogle Scholar
  136. 136.
    Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet. 2009;41:1350–3.PubMedCrossRefGoogle Scholar
  137. 137.
    Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P, et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature. 2010;467:338–42.PubMedCrossRefGoogle Scholar
  138. 138.
    Chadwick LH, The NIH. Roadmap Epigenomics Program data resource. Epigenomics. 2012;4:317–24.PubMedCrossRefGoogle Scholar
  139. 139.
    Xu N, Azziz R, Goodarzi MO. Epigenetics in polycystic ovary syndrome: a pilot study of global DNA methylation. Fertil Steril. 2010;94:781–3.PubMedCrossRefGoogle Scholar
  140. 140.
    Zhu JQ, Zhu L, Liang XW, Xing FQ, Schatten H, Sun QY. Demethylation of LHR in dehydroepiandrosterone-induced mouse model of polycystic ovary syndrome. Mol Hum Reprod. 2010;16:260–6.PubMedCrossRefGoogle Scholar
  141. 141.
    Qu F, Wang FF, Yin R, Ding GL, El-Prince M, Gao Q, et al. A molecular mechanism underlying ovarian dysfunction of polycystic ovary syndrome: hyperandrogenism induces epigenetic alterations in the granulosa cells. J Mol Med (Berl). 2012;90:911–23.PubMedCrossRefGoogle Scholar
  142. 142.
    Sang Q, Zhang S, Zou S, Wang H, Feng R, Li Q, et al. Quantitative analysis of follistatin (FST) promoter methylation in peripheral blood of patients with polycystic ovary syndrome. Reprod Biomed Online. 2013;26(2):157–63.PubMedCrossRefGoogle Scholar
  143. 143.
    Slomko H, Heo HJ, Einstein FH. Minireview: epigenetics of obesity and diabetes in humans. Endocrinology. 2012;153:1025–30.PubMedCrossRefGoogle Scholar
  144. 144.
    Xu N, Kwon S, Abbott DH, Geller DH, Dumesic DA, Azziz R, et al. Epigenetic mechanism underlying the development of polycystic ovary syndrome (PCOS)-like phenotypes in prenatally androgenized rhesus monkeys. PLoS One. 2011;6:e27286.PubMedCrossRefGoogle Scholar
  145. 145.
    Abbott DH, Dumesic DA, Eisner JR, Colman RJ, Kemnitz JW. Insights into the development of polycystic ovary syndrome (PCOS) from studies of prenatally androgenized female rhesus monkeys. Trends Endocrinol Metab. 1998;9:62–7.PubMedCrossRefGoogle Scholar
  146. 146.
    Jones MR, Wilson SG, Mullin BH, Mead R, Watts GF, Stuckey BG. Polymorphism of the follistatin gene in polycystic ovary syndrome. Mol Hum Reprod. 2007;13:237–41.PubMedCrossRefGoogle Scholar
  147. 147.
    Urbanek M, Wu X, Vickery KR, Kao LC, Christenson LK, Schneyer A, et al. Allelic variants of the follistatin gene in polycystic ovary syndrome. J Clin Endocrinol Metab. 2000;85:4455–61.PubMedCrossRefGoogle Scholar
  148. 148.
    Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835–40.PubMedCrossRefGoogle Scholar
  149. 149.
    Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003;115:199–208.PubMedCrossRefGoogle Scholar
  150. 150.
    Toloubeydokhti T, Bukulmez O, Chegini N. Potential regulatory functions of microRNAs in the ovary. Semin Reprod Med. 2008;26:469–78.PubMedCrossRefGoogle Scholar
  151. 151.
    Hong X, Luense LJ, McGinnis LK, Nothnick WB, Christenson LK. Dicer1 is essential for female fertility and normal development of the female reproductive system. Endocrinology. 2008;149:6207–12.PubMedCrossRefGoogle Scholar
  152. 152.
    Delic D, Grosser C, Dkhil M, Al-Quraishy S, Wunderlich F. Testosterone-induced upregulation of miRNAs in the female mouse liver. Steroids. 2010;75:998–1004.PubMedCrossRefGoogle Scholar
  153. 153.
    Luense LJ, Veiga-Lopez A, Padmanabhan V, Christenson LK. Developmental programming: gestational testosterone treatment alters fetal ovarian gene expression. Endocrinology. 2011;152:4974–83.PubMedCrossRefGoogle Scholar
  154. 154.
    Ohdaira H, Nakagawa H, Yoshida K. Profiling of molecular pathways regulated by microRNA 601. Comput Biol Chem. 2009;33:429–33.PubMedCrossRefGoogle Scholar
  155. 155.
    Nersesyan A, Chobanyan N. Micronuclei and other nuclear anomalies levels in exfoliated buccal cells and DNA damage in leukocytes of patients with polycystic ovary syndrome. J BUON. 2010;15:337–9.PubMedGoogle Scholar
  156. 156.
    Moran LJ, Noakes M, Clifton PM, Norman RJ, Fenech MF. Genome instability is increased in lymphocytes of women with polycystic ovary syndrome and is correlated with insulin resistance. Mutat Res. 2008;639:55–63.PubMedCrossRefGoogle Scholar
  157. 157.
    Yesilada E, Sahin I, Ozcan H, Yildirim IH, Yologlu S, Taskapan C. Increased micronucleus frequencies in peripheral blood lymphocytes in women with polycystic ovary syndrome. Eur J Endocrinol. 2006;154:563–8.PubMedCrossRefGoogle Scholar
  158. 158.
    Hamurcu Z, Bayram F, Kahriman G, Donmez-Altuntas H, Baskol G. Micronucleus frequency in lymphocytes and 8-hydroxydeoxyguanosine level in plasma of women with polycystic ovary syndrome. Gynecol Endocrinol. 2010;26:590–5.PubMedCrossRefGoogle Scholar
  159. 159.
    Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003;300:455.PubMedCrossRefGoogle Scholar
  160. 160.
    Nelson-DeGrave VL, Wickenheisser JK, Cockrell JE, Wood JR, Legro RS, Strauss JF, et al. Valproate potentiates androgen biosynthesis in human ovarian theca cells. Endocrinology. 2004;145:799–808.PubMedCrossRefGoogle Scholar
  161. 161.
    Belinsky SA, Schiller JH, Stidley CA. DNA methylation biomarkers to assess therapy and chemoprevention for non-small cell lung cancer. Nutr Rev. 2008;66 Suppl 1:S24–6.PubMedCrossRefGoogle Scholar
  162. 162.
    Mikeska T, Bock C, Do H, Dobrovic A. DNA methylation biomarkers in cancer: progress towards clinical implementation. Expert Rev Mol Diagn. 2012;12:473–87.PubMedCrossRefGoogle Scholar
  163. 163.
    Van De Voorde L, Speeckaert R, Van Gestel D, Bracke M, De Neve W, Delanghe J, et al. DNA methylation-based biomarkers in serum of patients with breast cancer. Mutat Res. 2012;751:304–25.CrossRefGoogle Scholar
  164. 164.
    Kim M, Long TI, Arakawa K, Wang R, Yu MC, Laird PW. DNA methylation as a biomarker for cardiovascular disease risk. PLoS One. 2010;5:e9692.PubMedCrossRefGoogle Scholar
  165. 165.
    Bernstein I, Byun HM, Mohrbacher A, Douer D, Gorospe G, Hergesheimer J, et al. A phase I biological study of azacitidine (Vidaza) to determine the optimal dose to inhibit DNA methylation. Epigenetics. 2010;5:750–7.PubMedCrossRefGoogle Scholar
  166. 166.
    Martin MG, Walgren RA, Procknow E, Uy GL, Stockerl-Goldstein K, Cashen AF, et al. A phase II study of 5-day intravenous azacitidine in patients with myelodysplastic syndromes. Am J Hematol. 2009;84:560–4.PubMedCrossRefGoogle Scholar
  167. 167.
    Jia H, Wang B, Yu L, Jiang Z. Association of angiotensin-converting enzyme gene insertion/ deletion polymorphism with polycystic ovary syndrome: a meta-analysis. J Renin Angiotensin Aldosterone Syst. 2013;14(3):255–62.Google Scholar
  168. 168.
    Gao L, Zhang Y, Cui Y, Jiang Y, Wang X, Liu J. Association of the T45G and G276T polymorphisms in the adiponectin gene with PCOS: a meta-analysis. Gynecol Endocrinol. 2012;28:106–10.PubMedCrossRefGoogle Scholar
  169. 169.
    Xian L, He W, Pang F, Hu Y. ADIPOQ gene polymorphisms and susceptibility to polycystic ovary syndrome: a HuGE survey and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2012;161:117–24.PubMedCrossRefGoogle Scholar
  170. 170.
    Wang R, Goodarzi MO, Xiong T, Wang D, Azziz R, Zhang H. Negative association between androgen receptor gene CAG repeat polymorphism and polycystic ovary syndrome? A systematic review and meta-analysis. Mol Hum Reprod. 2012;18:498–509.PubMedCrossRefGoogle Scholar
  171. 171.
    Li Y, Liu F, Luo S, Hu H, Li XH, Li SW. Polymorphism T→C of gene CYP17 promoter and polycystic ovary syndrome risk: a meta-analysis. Gene. 2012;495:16–22.PubMedCrossRefGoogle Scholar
  172. 172.
    Ioannidis A, Ikonomi E, Dimou NL, Douma L, Bagos PG. Polymorphisms of the insulin receptor and the insulin receptor substrates genes in polycystic ovary syndrome: a Mendelian randomization meta-analysis. Mol Genet Metab. 2010;99:174–83.PubMedCrossRefGoogle Scholar
  173. 173.
    Ruan Y, Ma J, Xie X. Association of IRS-1 and IRS-2 genes polymorphisms with polycystic ovary syndrome: a meta-analysis. Endocr J. 2012;59:601–9.PubMedCrossRefGoogle Scholar
  174. 174.
    Bagos PG. Plasminogen activator inhibitor-1 4G/5G and 5,10-methylene-tetrahydrofolate reductase C677T polymorphisms in polycystic ovary syndrome. Mol Hum Reprod. 2009;15:19–26.PubMedCrossRefGoogle Scholar
  175. 175.
    San-Millan JL, Escobar-Morreale HF. The role of genetic variation in peroxisome proliferator-activated receptors in the polycystic ovary syndrome (PCOS): an original case–control study followed by systematic review and meta-analysis of existing evidence. Clin Endocrinol (Oxf). 2010;72:383–92.CrossRefGoogle Scholar
  176. 176.
    Tang ST, Wang CJ, Tang HQ, Peng WJ, Wang YM, Zhang Q. Association of Pro12Ala polymorphism in peroxisome proliferator-activated receptor gamma with polycystic ovary syndrome: a meta-analysis. Mol Biol Rep. 2012;39:9649–60.PubMedCrossRefGoogle Scholar
  177. 177.
    Zhang H, Bi Y, Hu C, Lu W, Zhu D. Association between the Pro12Ala polymorphism of PPAR-gamma gene and the polycystic ovary syndrome: a meta-analysis of case–control studies. Gene. 2012;503:12–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Michelle R. Jones
    • 1
  • Ning Xu
    • 1
  • Mark O. Goodarzi
    • 1
  1. 1.Division of Endocrinology, Diabetes, and Metabolism, Department of MedicineCedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations