Common Bean Genomics and Its Applications in Breeding Programs



Because of its nutritional value, easiness of cultivation, and cultural preference in many cases, common bean (Phaseolus vulgaris L.) is the most important grain legume in the human diet worldwide. Recent genomic evidence suggest that common bean originated in Central America and confirms the two centers of domestication previously characterized (Mesoamerican and Andean), with well-defined races within each gene pool. Total world production of dry bean from the 10 year period 1961–1970 increased 65 % to 169 million MT in the period 2001–2010. The main challenge now is how to apply these genomic tools into breeding programs for increased efficiency. Applications go from marker-assisted breeding to tracking of F1 crosses, and even DNA fingerprinting, among others. More recently, the development of thousands of single nucleotide polymorphisms (SNP) markers and the completion of the bean genome sequence have opened numerous opportunities for fine mapping and gene characterization. The exploitation of linkage disequilibrium through association mapping allows for rapid identification of important genomic regions associated with traits of economic importance without the need of creating bi-parental populations for this goal. The following sections will describe specific examples of applications of these genomic tools into breeding programs and illustrate some of the possible future directions some of these technologies may follow.


Phaseolus vulgaris Disease resistance Genomic resources Gene pools Whole genome sequencing Molecular markers Marker assisted selection MAGIC population Single nucleotide polymorphism Genotyping by sequencing 


  1. Acosta-Gallegos JA, Kelly JD, Gepts P (2007) Prebreeding in common bean and use of genetic diversity from wild germplasm. Crop Sci 47:S44–S59CrossRefGoogle Scholar
  2. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Quian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745PubMedCrossRefGoogle Scholar
  3. Axelsson E, Ratnakumar A, Arendt M-L, Maqbool K, Webster MT, Perloski M, Liberg O, Arnemo JM, Hedhammar A, Lindblad-Toh K (2013) The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 495:360–364PubMedCrossRefGoogle Scholar
  4. Balardin RS, Kelly JD (1998) Interaction among races of Colletotrichum lindemuthianum and diversity in Phaseolus vulgaris. J Am Soc Hortic Sci 123:1038–1047Google Scholar
  5. Balding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7:781–791Google Scholar
  6. Barbosa AEAD, Albuquerque ÉVS, Silva MCM, Valencia A, Rocha TL, Grossi-de-Sa MF (2010) Alpha-Amylase inhibitor-1 gene from Phaseolus vulgaris expressed in Coffea arabica plants inhibits alpha-amylases from the coffee berry borer pest. BMC Biotechnol 10:44PubMedCrossRefGoogle Scholar
  7. Beaver JS, Osorno JM (2009) Achievements and limitations of contemporary common bean breeding using conventional and molecular approaches. Euphytica 168:145–176CrossRefGoogle Scholar
  8. Beebe S (2012) Common bean breeding in the tropics. In: Janick J (ed) Plant breeding reviews 36. Wiley, Hoboken, NJ, pp 357–426Google Scholar
  9. Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot 95:45–90PubMedCrossRefGoogle Scholar
  10. Bitocchi E, Nanni L, Bellucci E, Rossi M, Giardini A, Zeuli PS, Logozzo G, Stougaard J, McClean P, Attene G, Papa R (2012) Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad Sci U S A 109:E788–E796PubMedCrossRefGoogle Scholar
  11. Blair M, Pedraza F, Buendia H, Gaitan E, Beebe S, Gepts P, Thome J (2003) Development of a genome wide anchored microsatellite for common bean (Phaseolus vulgaris L). Theor Appl Genet 107:1362–1374PubMedCrossRefGoogle Scholar
  12. Blair MW, Rodriguez LM, Pedraza F, Morales F, Beebe S (2007) Genetic mapping of the bean olden mosaic geminivirus resistant gene Bgm-1 and linkage with potyvirus resistance in common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374CrossRefGoogle Scholar
  13. Blair MW, Díaz LM, Buendía HF, Duque MC (2009) Genetic diversity, seed size associations and population structure of a core collection of common beans (Phaseolus vulgaris L.). Theor Appl Genet 19:955–972CrossRefGoogle Scholar
  14. Blair MW, Hurtado N, Chavarro CM, Muñoz-Torres MC, Giraldo MC, Pedraza F, Tomkins J, Wing R (2011) Gene-based SSR markers for common bean (Phaseolus vulgaris L.) derived from root and leaf tissue ESTs: an integration of the BMc series. BMC Plant Biol 11:50PubMedCrossRefGoogle Scholar
  15. Bonfim K, Faria JC, Nogueira EOPL, Mendes ÉA, Francisco JL, Aragão (2009) RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant Microbe Interact 20:717–726CrossRefGoogle Scholar
  16. Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.) – model food legumes. Plant and Soil 252:55–128CrossRefGoogle Scholar
  17. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Oropeza-Rosas M, Rocheford TR, Romay MC, Romero S, Salvo S, Sanchez-Villeda H, Sofia da Silva H, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718PubMedCrossRefGoogle Scholar
  18. Caldwell KS, Russell J, Langridge P, Powell W (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172:557–567PubMedCrossRefGoogle Scholar
  19. Câmara CR, Urrea CA, Schlegel V (2013) Pinto Beans (Phaseolus vulgaris L.) as a functional food: implications on human health. Agriculture 3:90–111CrossRefGoogle Scholar
  20. Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221PubMedCrossRefGoogle Scholar
  21. Chen Y (2013) Dissection of agronomic traits in crops by association mapping. In: Lübberstedt T, Varshney RK (eds) Diagnostics in plant breeding. Springer, Dordrecht, pp 119–142CrossRefGoogle Scholar
  22. Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos T Roy Soc B 363:557–572Google Scholar
  23. Cook DE, Lee TG, Guo X, Melito S, Wang K, Bayless AM, Wang J, Hughes TJ, Willis DK, Clemente TE, Biers BW, Jiang J, Hudson ME, Bent AF (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338:1206–2909PubMedCrossRefGoogle Scholar
  24. Córdoba J, Chavarro C, Schlueter J, Jackson S, Blair M (2010) Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers. BMC Genomics 11:436PubMedCrossRefGoogle Scholar
  25. Duvick DN, Cassman KG (1999) Post-green revolution trends in yield potential of temperate maize in the north-central United States. Crop Sci 39:1622–1630CrossRefGoogle Scholar
  26. Eapen S (2008) Advances in development of transgenic pulse crops. Biotechnol Adv 26:162–168PubMedCrossRefGoogle Scholar
  27. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379PubMedCrossRefGoogle Scholar
  28. Ender M, Terpstra K, Kelly JD (2008) Marker-assisted selection for white mold resistance in common bean. Mol Breed 21:149–157CrossRefGoogle Scholar
  29. Evans LT, Fisher RA (1999) Yield Potential: its definition, measurement, and significance. Crop Sci 39:1544–1551CrossRefGoogle Scholar
  30. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171PubMedCrossRefGoogle Scholar
  31. Felicetti E, Song Q, Jia G, Cregan P, Bett K, Miklas PN (2012) Simple sequence repeats linked with slow darkening trait in pinto bean discovered by single nucleotide polymorphism assay and whole genome sequencing. Crop Sci 52:1600–1608CrossRefGoogle Scholar
  32. Freyre R, Skroch P, Geffroy V, Adam-Blondon A-F, Shirmohamadali A, Johnson W, Llaca V, Nodari R, Pereira P, Tsai S-M, Tohme J, Dron M, Nienhuis J, Vallejos C, Gepts P (1998) Towards an integrated linkage map of common bean. 4. Development of a core map and alignment of RFLP maps. Theor Appl Genet 97:847–856CrossRefGoogle Scholar
  33. Freytag GF, Debouck DG (2002) Taxonomy, distribution and ecology of the genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and Central America. Sida botanical miscellany, vol 23. Botanical Research Institute of Texas, Fort Worth, TXGoogle Scholar
  34. Galeano CH, Fernandez AC, Franco-Herrera N, Cichy KA, McClean PE, Vanderleyden J, Blair MW (2011) Saturation of an intra-gene pool linkage map: towards a unified consensus linkage map for fine mapping and synteny analysis in common bean. PLoS One 6:12CrossRefGoogle Scholar
  35. Gepts P, Beavis WD, Brummer EC, Shoemaker RC, Stalker HT, Weeden NF, Young ND (2005) Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol 137:1228–1235PubMedCrossRefGoogle Scholar
  36. Gepts P, Aragão FJL, de Barros E, Blair MW, Brondani R, Broughton W, Galasso I, Hernández G, Kami J, Lariguet P, McClean P, Melotto M, Miklas P, Pauls P, Pedrosa-Harand A, Timothy P, Sánchez F, Sparvoli F, Yu K (2008) Genomics of Phaseolus beans, a major source of dietary protein and micronutrients in the tropics. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer science + Business media, New York, NY, pp 113–143CrossRefGoogle Scholar
  37. Gonçalves-Vidigal MC, Cruz AS, Garcia A, Kami J, Vidigal Filho PS, Sousa LL, McClean P, Gepts P, Pastor-Corrales MA (2011) Linkage mapping of the Phg-1 and Co-1 4 genes for resistance to angular leaf spot and anthracnose in the common bean cultivar AND 277. Theor Appl Genet 122:893–903PubMedCrossRefGoogle Scholar
  38. Guzmán P, Gilbertson RL, Nodari R, Johnson WC, Temple SR, Mandala D, Gepts P (1995) Characterization of variability in the fungus Phaeoisariopsis griseola suggests coevolution with the common bean (Phaseolus vulgaris L.). Phytopathology 85:600–607CrossRefGoogle Scholar
  39. Hamblin MT, Salas-Fernandez MG, Casa AM, Mitchell SE, Paterson AH, Kresovich S (2005) Equilibrium processes cannot explain high levels of short-85and medium-range linkage disequilibrium in the domesticated grass sorghum bicolor. Genetics 171:1247–1256PubMedCrossRefGoogle Scholar
  40. Hougaard BK, Madsen LH, Sandal N, Moretzsohn MC, Fredslund J, Schauser L, Nielsen AM, Rohde T, Sato S, Tabata S, Bertioli DJ, Stougaard J (2008) Legume anchor markers link syntenic regions between Phaseolus vulgaris, Lotus japonicus, Medicago truncatula and Arachis. Genetics 119:2299–2312CrossRefGoogle Scholar
  41. Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang T, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497–501PubMedCrossRefGoogle Scholar
  42. Huang BE, Clifford D, Cavanagh C (2013) Selecting subsets of genotyped experimental populations for phenotyping to maximize genetic diversity. Theor Appl Genet 126:379–388CrossRefGoogle Scholar
  43. Hufford MB, Xu X, van Heerwaarden J, Pyhajarvi J, Chia J-M, Cartwright RA, Elshire RJ, Glaubitz JC, Guill KE, Kaeppler SM, Lai J, Morrell PL, Shannon LM, Song C, Springer NM, Swanson-Wagner RA, Tiffin P, Wang J, Zhang G, Doebley J, McMullen MD, Ware D, Buckler ES, Yang S, Ross-Ibarra J (2012) Comparative population genomics of maize domestication and improvement. Nat Genet 44:808–811PubMedCrossRefGoogle Scholar
  44. Hyten DL, Chol IY, Song QJ, Shoemaker RC, Nelson RL, Costa JM, Specht JE, Cregan PB (2007) Highly variable patterns of linkage disequilibrium in multiple soybean populations. Genetics 175:1937–1944PubMedCrossRefGoogle Scholar
  45. Hyten DL, Song O, Fickus EW, Quigley CV, Lim JS, Choi IY, Hwang EY, Pastor-Corrales M, Cregan PB (2010) High-throughput SNP discovery and assay development in common bean. BMC Genomics 11:475PubMedCrossRefGoogle Scholar
  46. IRGSP (International Rice Genome Sequencing Project) (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  47. Ishitani M, Raoa I, Wenzlb P, Beebea S, Tohme J (2004) Integration of genomics approach with traditional breeding towards improving abiotic stress adaptation: drought and aluminum toxicity as case studies. Field Crops Res 90:35–45CrossRefGoogle Scholar
  48. Jiao Y, Zhao YH, Ren L, Song W, Zeng B, Guo J, Wang B, Liu Z, Chen J, Li W, Zhang M, Xie S, Lai J (2012) Genome-wide genetic changes during modern breeding of maize. Nat Genet 44:812–815PubMedCrossRefGoogle Scholar
  49. Kelly JD, Vallejo VA (2004) A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. HortScience 39:1196–1207Google Scholar
  50. Kim HS, Hartman GL, Manandhar JB, Graef GL, Steadman JR, Diers BW (2000) Reaction of soybean cultivars to Sclerotinia stem rot in field, greenhouse, and laboratory evaluations. Crop Sci 40:665–669CrossRefGoogle Scholar
  51. Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R (2009) A Multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5:e1000551. doi: 10.1371/journal.pgen.1000551 PubMedCrossRefGoogle Scholar
  52. Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci. doi: 10.1016/j.tplants.2006.12.001 PubMedGoogle Scholar
  53. Mamidi S, Chikara S, Goos RJ, Hyten DL, Annam D, Moghaddam SM, Lee RK, Cregan PB, McClean PE (2011) Genome-wide association analysis identifies candidate genes associated with iron deficiency chlorosis in soybean. Plant Genome 4:154–164CrossRefGoogle Scholar
  54. McClean PE, Lee RK, Otto C, Gepts P, Bassett MJ (2002) Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.). J Heredity 93:148–152CrossRefGoogle Scholar
  55. McClean P, Gepts P, Jackson S, Rokshar D, Vance C (2008) Towards a whole genome sequence of common bean (Phaseolus vulgaris): background, approaches, applications. Version 1. Accessed 28 May 2013
  56. McClean PE, Mamidi S, McConnell M, Chikara S, Lee R (2010) Synteny mapping between common bean and soybean reveals extensive blocks of shared loci. BMC Genomics 11:184PubMedCrossRefGoogle Scholar
  57. McConnell M, Mamidi S, Lee R, Chikara S, Rossi M, Papa R, McClean P (2010) Syntenic relationships among legumes revealed using a gene-based genetic linkage map of common bean (Phaseolus vulgaris L.). Theor Appl Genet 121:1103–1116PubMedCrossRefGoogle Scholar
  58. Miklas PN, Singh SP (2007) Common bean. In: Cole C (ed) Genome mapping and molecular breeding in plants, volume 3. Pulses, sugar and tuber crops. Springer, Heidelberg, pp 1–31CrossRefGoogle Scholar
  59. Miklas PN, Stone V, Daly MJ, Stavely JR, Steadman JR, Bassett MJ, Delorme R, Beaver JS (2000) Bacterial, fungal, and viral disease resistance loci mapped in a recombinant inbred common bean population (‘Dorado’/XAN 176). J Am Soc Hortic Sci 125:476–481Google Scholar
  60. Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding. Euphytica 147:105–131CrossRefGoogle Scholar
  61. Mkandawire AB, Mabagala RB, Guzmán P, Gepts P, Gilbertson RL (2004) Genetic diversity and pathogenic variation of common blight bacteria (Xanthomonas campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans) suggests pathogen coevolution with the common bean. Phytopathology 94:593–603PubMedCrossRefGoogle Scholar
  62. Moghaddam SM, Song Q, Mamidi S, Lee R, Cregan P, Osorno JM, McClean PE (2013) Developing market class specific indel markers from next generation sequence data in Phaseolus vulgaris. Frontiers Plant Sci doi: 10.3389/fpls.2013.00251
  63. Morrell PL, Buckler ES, Ross-Ibarra J (2011) Crop genomics: advances and applications. Nat Rev Genet 13:85–96PubMedGoogle Scholar
  64. Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci U S A 110:453–458PubMedCrossRefGoogle Scholar
  65. Myers JR, Gilmore B, Kean D (1999) Correlation between the field and straw test for white mold resistance in common bean. Annu Rep Bean Improv Coop 42:57–58Google Scholar
  66. Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR, De Jager PL, Evans D, Schneider JA, Carrasquillo MM, Ertekin-Taner N, Younkin SG, Cruchaga C, Kauwe JSK, Nowotny P, Kramer P, Hardy J, Huentelman MJ, Myers AJ, Barmada MM, Demirci FY, Baldwin CT, Green RC, Rogaeva E, St George-Hyslop P, Arnold SE, Barber R, Beach T, Bigio EH, Bowen JD, Boxer A, Burke JR, Cairns NJ, Carlson CS, Carney RM, Carroll SL, Chui HC, Clark DG, Corneveaux J, Cotman CW, Cummings JL, DeCarli C, DeKosky ST, Diaz-Arrastia R, Dick M, Dickson DW, Ellis WG, Faber KM, Fallon KB, Farlow MR, Ferris S, Frosch MP, Galasko DR, Ganguli M, Gearing M, Geschwind DH, Ghetti B, Gilbert JR, Gilman S, Giordani B, Glass JD, Growdon JH, Hamilton RL, Harrell LE, Head E, Honig LS, Hulette CM, Hyman BT, Jicha GA, Jin L-W, Johnson N, Karlawish J, Karydas A, Kaye JA, Kim R, Koo EH, Kowall NW, Lah JJ, Levey AI, Lieberman AP, Lopez OL, Mack WJ, Marson DC, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Parisi JE, Perl DP, Peskind E, Petersen RC, Poon WW, Quinn JF, Rajbhandary RA, Raskind M, Reisberg B, Ringman JM, Roberson ED, Rosenberg RN, Sano M, Schneider LS, Seeley W, Shelanski ML, Slifer MA, Smith CD, Sonnen JA, Spina S, Stern RA, Tanzi RE, Trojanowski JQ, Troncoso JC, Van Deerlin VM, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Williamson J, Woltjer RL, Cantwell LB, Dombroski BA, Beekly D, Lunetta KL, Martin ER, Kamboh MI, Saykin AJ, Reiman EM, Bennett DA, Morris JC, Montine TJ, Goate AM, Blacker D, Tsuang DW, Hakonarson H, Kukull WA, Foroud TM, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset alzheimer’s disease. Nat Genet 43:436–441PubMedCrossRefGoogle Scholar
  67. Papa R, Bellucci E, Rossi M, Leonardi S, Rau D, Gepts P, Nanni L, Attene G (2007) Tagging the signatures of domestication in common bean (Phaseolus vulgaris) by means of pooled DNA samples. Ann Bot 100:1039–1051PubMedCrossRefGoogle Scholar
  68. Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180PubMedCrossRefGoogle Scholar
  69. Ramirez M, Graham MA, Blanco-Lopez L, Silvente S, Medrano-Soto A, Blair MW, Hernandez G, Vance CP, Lara M (2005) Sequencing and analysis of common bean ESTs. Building a foundation for functional genomics. Plant Physiol 137:1211–1227PubMedCrossRefGoogle Scholar
  70. Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3:1293. doi: 10.1038/ncomms2296 PubMedCrossRefGoogle Scholar
  71. Repinski SL, Kwak M, Gepts P (2012) The common bean growth habit gene PvTFL1y is a functional homolog of Arabidopsis TFL1. Theor Appl Genet 124:1539–1547PubMedCrossRefGoogle Scholar
  72. Rivkin MI, Vallejos CE, McClean PE (1999) Disease-resistance related sequences in common bean. Genome 42:41–47PubMedCrossRefGoogle Scholar
  73. Rubin C, Zody MC, Eriksson J, Meadows JRS, Sherwood E, Webster MT, Jiang L, Ingman M, Sharpe T, Ka S, Hallböök F, Besnier F, Carlborg O, Bed'hom B, Tixier-Boichard M, Jensen P, Siegel P, Lindblad-Toh K, Andersson L (2010) Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464:587–591PubMedCrossRefGoogle Scholar
  74. Rubin CJ, Megens HJ, Martinez Barrio A, Gaqbool K, Sayyab S, Schwochow D, Wang C, Carlborg O, Jern P, Jorgensen CB, Archibald AL, Fredholm M, Groenen MA, Andersson L (2012) Strong signatures of selection in the domestic pig genome. Proc Natl Acad Sci U S A 109:19529–19536PubMedCrossRefGoogle Scholar
  75. Sandlin CM, Steadman JR, Araya CM, Coyne DP (1999) Isolates of Uromyces appendiculatus with specific virulence to landraces of Phaseolus vulgaris of Andean origin. Plant Dis 83:108–113CrossRefGoogle Scholar
  76. Schlueter JA, Goicoechea JL, Collura K, Gill N, Lin J, Yu Y, Kudrna D, Zuccolo A, Vallejos CE, Muñoz-Torres M, Blair MW, Tohme J, Tomkins J, McClean P, Wing RA, Jackson SA (2008) BAC-end Sequence analysis and a draft physical map of the common bean (Phaseolus vulgaris L.) genome. Trop Plant Biol 1:40–48CrossRefGoogle Scholar
  77. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the paleopolyploid soybean. Nature 463:178–183PubMedCrossRefGoogle Scholar
  78. Schneider K, Brothers M, Kelly JD (1997) Marker-assisted selection to improve drought resistance in common bean. Crop Sci 37:51–60CrossRefGoogle Scholar
  79. Shannon S, Meeks-Wagner DR (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3:877–892PubMedGoogle Scholar
  80. Shi C, Navabi A, Yu K (2011) Association mapping of common bacterial blight resistance QTL in Ontario bean breeding populations. BMC Plant Biol 11:52PubMedCrossRefGoogle Scholar
  81. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630PubMedCrossRefGoogle Scholar
  82. Soule M, Porter L, Medina J, Santana GP, Blair MW, Miklas PN (2011) Comparative QTL map for white mold resistance in common bean, and characterization of partial resistance in dry bean lines VA19 and I9365-3. Crop Sci 51:123–139CrossRefGoogle Scholar
  83. Singh SP, Gepts P, Debouck DG (1991). Races of common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 45:379–396Google Scholar
  84. Tian Z, Wang X, Lee R, Li Y, Specht JE, Nelson RL, McClean PE, Qiu L, Ma J (2010) Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci U S A 19:8563–8568CrossRefGoogle Scholar
  85. USDA-ERS (2013) Vegetables and melons outlook—dry edible beans. United States Department of Agriculture, Economic Research Service, Washington, DCGoogle Scholar
  86. Vallad G, Rivkin M, Vallejos CE, McClean PE (2001) Cloning and homology modeling of a Pto-like protein kinase family of common bean (Phaseolus vulgaris L.). Theor Appl Genet 103:1046–1058CrossRefGoogle Scholar
  87. Vallejos CE, Sakiyama NS, Chase CD (1992) A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131:733–740PubMedGoogle Scholar
  88. Vandemark GJ, Brick MA, Kelly JD, Osorno JM, Urrea CA (2013) Yield gains in edible grain legumes. In: Smith S (ed) Yield gains in major U.S. field crops. Madison WI, Crop Science Soc. of America (CSSA)Google Scholar
  89. Von Mogel KH (2013) Taking the phenomics revolution into the field. CSA News Mag 58:4–10Google Scholar
  90. Wang C, Chen S, Yu S (2011) Functional markers from multiple loci in GS3 for fine marker-assisted selection of grain length in rice. Theor Appl Genet 122:905–913PubMedCrossRefGoogle Scholar
  91. Wright S (1951) The genetical structure of populations. Ann Eugen 15:322–354Google Scholar
  92. Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L, Li J, He W, Zhang G, Zheng X, Zhang F, Li Y, Yu C, Kristiansen K, Zhang X, Wang J, Wright M, McCouch S, Nielsen R, Wang J, Wang W (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30:105–111CrossRefGoogle Scholar
  93. Yamanaka S, Nakamura I, Watanabe KN, Sato YI (2004) Identification of SNPs in the waxy gene among glutinous rice cultivars and their evolutionary significance during the domestication process of rice. Theor Appl Genet 108:1200–1204PubMedCrossRefGoogle Scholar
  94. Yang SS, Valdés-López O, Xu WW, Bucciarelli B, Gronwald JW, Hernández G, Vance CP (2010) Transcript profiling of common bean (Phaseolus vulgaris L.) using the GeneChip® soybean genome array: optimizing analysis by masking biased probes. BMC Plant Biol 10:85PubMedCrossRefGoogle Scholar
  95. Yang X, Gao S, Xu S, Zhang Z, Prasanna BM, Li L, Li J, Yan J (2011) Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breeding 28:511–526CrossRefGoogle Scholar
  96. Yu K, Park SJ, Poysa V (2000) Marker-assisted selection of common beans for resistance to common bacterial blight: efficacy and economics. Plant Breed 119:411–415CrossRefGoogle Scholar
  97. Yuste-Lisbona FJ, Santalla M, Capel C, Garcia-Alcazar, De La Fuente M, Capel C, De Ron A, Lozano R (2012) Marker-based linkage map of Andean common bean (Phaseolus vulgaris L) and mapping of QTLs underlying popping ability traits. BMC Plant Biol 12:136PubMedCrossRefGoogle Scholar
  98. Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome-wide association mapping reveals rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467PubMedCrossRefGoogle Scholar
  99. Zhu H, Choi H, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York  2014

Authors and Affiliations

  1. 1.Department of Plant SciencesNorth Dakota State UniversityFargoUSA

Personalised recommendations