Advertisement

Charged Particles in Stereotactic Radiosurgery

  • Shervin M. Shirvani
  • Joe Y. Chang

Abstract

Charged particle radiotherapy has distinct physical and radiobiological advantages when compared to photon radiation. The depth–dose distribution of particles is characterized by a Bragg peak which results in minimal dose delivery beyond the treatment volume and, consequently, relative sparing of organs-at-risk. Additionally, the therapeutic efficacy of particle therapy is less likely to be influenced by intrinsic mechanisms of radioresistance such as hypoxia and cell cycle position. Recent advances in patient positioning, immobilization, and image-guidance have allowed investigation into particle radiosurgery, which combines particle therapy with a hypofractionated, stereotactic treatment approach. While the preliminary local control, survival, and toxicity outcomes from studies of multiple tumor sites are promising, randomized controlled trials are needed to determine whether improved efficacy and reduced morbidity justify the use of particle radiosurgery despite higher financial costs.

Keywords

Charged Particle Bragg Peak Local Control Rate Linear Energy Transfer Relative Biological Effectiveness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chang JY, Zhang X, Wang X, Kang Y, Riley B, Bilton S, et al. Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in Stage I or Stage III non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2006;65(4):1087–96.CrossRefPubMedGoogle Scholar
  2. 2.
    Auberger T, Seydl K, Futschek T, Sztankay A, Sweeney RA, Lukas P. Photons or protons: precision radiotherapy of lung cancer. Strahlenther Onkol. 2007;183(Spec No 2):3–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Georg D, Hillbrand M, Stock M, Dieckmann K, Potter R. Can protons improve SBRT for lung lesions? Dosimetric considerations. Radiother Oncol. 2008;88(3):368–75.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang X, Li Y, Pan X, Xiaoqiang L, Mohan R, Komaki R, et al. Intensity-modulated proton therapy reduces the dose to normal tissue compared with intensity-modulated radiation therapy or passive scattering proton therapy and enables individualized radical radiotherapy for extensive stage IIIB non-small-cell lung cancer: a virtual clinical study. Int J Radiat Oncol Biol Phys. 2009;77(2):357–66.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Albertini F, Bolsi A, Lomax AJ, Rutz HP, Timmerman B, Goitein G. Sensitivity of intensity modulated proton therapy plans to changes in patient weight. Radiother Oncol. 2008;86(2):187–94.CrossRefPubMedGoogle Scholar
  6. 6.
    Engelsman M, Rietzel E, Kooy HM. Four-dimensional proton treatment planning for lung tumors. Int J Radiat Oncol Biol Phys. 2006;64(5):1589–95.CrossRefPubMedGoogle Scholar
  7. 7.
    Chang JY, Cox JD. Improving radiation conformality in the treatment of non-small cell lung cancer. Semin Radiat Oncol. 2010;20(3):171–7.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Zhao L, Sandison GA, Farr JB, Hsi WC, Li XA. Dosimetric impact of intrafraction motion for compensator-based proton therapy of lung cancer. Phys Med Biol. 2008;53(12):3343–64.CrossRefPubMedGoogle Scholar
  9. 9.
    Hui Z, Zhang X, Starkschall G, Li Y, Mohan R, Komaki R, et al. Effects of interfractional motion and anatomic changes on proton therapy dose distribution in lung cancer. Int J Radiat Oncol Biol Phys. 2008;72(5):1385–95.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Kang Y, Zhang X, Chang JY, Wang H, Wei X, Liao Z, et al. 4D Proton treatment planning strategy for mobile lung tumors. Int J Radiat Oncol Biol Phys. 2007;67(3):906–14.CrossRefPubMedGoogle Scholar
  11. 11.
    Ando K, Kase Y. Biological characteristics of carbon-ion therapy. Int J Radiat Biol. 2009;85(9):715–28.CrossRefPubMedGoogle Scholar
  12. 12.
    Gerweck LE, Kozin SV. Relative biological effectiveness of proton beams in clinical therapy. Radiother Oncol. 1999;50(2):135–42.CrossRefPubMedGoogle Scholar
  13. 13.
    Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010;303(11):1070–6.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Nagata Y, Takayama K, Matsuo Y, Norihisa Y, Mizowaki T, Sakamoto T, et al. Clinical outcomes of a phase I/II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame. Int J Radiat Oncol Biol Phys. 2005;63(5):1427–31.CrossRefPubMedGoogle Scholar
  15. 15.
    Uematsu M, Shioda A, Suda A, Fukui T, Ozeki Y, Hama Y, et al. Computed tomography-guided frameless stereotactic radiotherapy for stage I non-small cell lung cancer: a 5-year experience. Int J Radiat Oncol Biol Phys. 2001;51(3):666–70.CrossRefPubMedGoogle Scholar
  16. 16.
    Xia T, Li H, Sun Q, Wang Y, Fan N, Yu Y, et al. Promising clinical outcome of stereotactic body radiation therapy for patients with inoperable Stage I/II non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2006;66:117–25.CrossRefPubMedGoogle Scholar
  17. 17.
    Stauder MC, Macdonald OK, Olivier KR, Call JA, Lafata K, Mayo CS, et al. Early pulmonary toxicity following lung stereotactic body radiation therapy delivered in consecutive daily fractions. Radiother Oncol. 2011;99:166–71.CrossRefPubMedGoogle Scholar
  18. 18.
    Nagata Y, Hiraoka M, Mizowaki T, Narita Y, Matsuo Y, Norihisa Y, et al. Survey of stereotactic body radiation therapy in Japan by the Japan 3-D Conformal External Beam Radiotherapy Group. Int J Radiat Oncol Biol Phys. 2009;75(2):343–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Joyner M, Salter BJ, Papanikolaou N, Fuss M. Stereotactic body radiation therapy for centrally located lung lesions. Acta Oncol. 2006;45(7):802–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Timmerman R, McGarry R, Yiannoutsos C, Papiez L, Tudor K, DeLuca J, et al. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol. 2006;24(30):4833–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Register SP, Zhang X, Mohan R, Chang JY. Proton stereotactic body radiation therapy for clinically challenging cases of centrally and superiorly located stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2011;80(4):1015–22.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Macdonald OK, Kruse JJ, Miller JM, Garces YI, Brown PD, Miller RC, et al. Proton beam radiotherapy versus three-dimensional conformal stereotactic body radiotherapy in primary peripheral, early-stage non-small-cell lung carcinoma: a comparative dosimetric analysis. Int J Radiat Oncol Biol Phys. 2009;75(3):950–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Onishi H, Shirato H, Nagata Y, Hiraoka M, Fujino M, Gomi K, et al. Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study. J Thorac Oncol. 2007;2(7 Suppl 3):S94–100.CrossRefPubMedGoogle Scholar
  24. 24.
    Fakiris AJ, McGarry RC, Yiannoutsos CT, Papiez L, Williams M, Henderson MA, et al. Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study. Int J Radiat Oncol Biol Phys. 2009;75(3):677–82.CrossRefPubMedGoogle Scholar
  25. 25.
    Baumann P, Nyman J, Lax I, Friesland S, Hoyer M, Rehn Ericsson S, et al. Factors important for efficacy of stereotactic body radiotherapy of medically inoperable stage I lung cancer. A retrospective analysis of patients treated in the Nordic countries. Acta Oncol. 2006;45(7):787–95.CrossRefPubMedGoogle Scholar
  26. 26.
    Nagata Y, Negoro Y, Aoki T, Mizowaki T, Takayama K, Kokubo M, et al. Clinical outcomes of 3D conformal hypofractionated single high-dose radiotherapy for one or two lung tumors using a stereotactic body frame. Int J Radiat Oncol Biol Phys. 2002;52(4):1041–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Hara R, Itami J, Kondo T, Aruga T, Uno T, Sasano N, et al. Clinical outcomes of single-fraction stereotactic radiation therapy of lung tumors. Cancer. 2006;106(6):1347–52.CrossRefPubMedGoogle Scholar
  28. 28.
    Grills IS, Mangona VS, Welsh R, Chmielewski G, McInerney E, Martin S, et al. Outcomes after stereotactic lung radiotherapy or wedge resection for stage I non-small-cell lung cancer. J Clin Oncol. 2010;28(6):928–35.CrossRefPubMedGoogle Scholar
  29. 29.
    Ricardi U, Filippi AR, Guarneri A, Giglioli FR, Ciammella P, Franco P, et al. Stereotactic body radiation therapy for early stage non-small cell lung cancer: results of a prospective trial. Lung Cancer. 2009;68(1):72–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Lagerwaard FJ, Haasbeek CJ, Smit EF, Slotman BJ, Senan S. Outcomes of risk-adapted fractionated stereotactic radiotherapy for stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2008;70(3):685–92.CrossRefPubMedGoogle Scholar
  31. 31.
    Nagata Y, Hiraoka M, Shibata T, Onishi H. A phase II trial of Stereotactic body radiation therapy for operable TIN0M0 non-small cell lung cancer: Japan Clinical Oncology Group (JCOG0403). Int J Radiat Oncol Biol Phys. 2010;78:S27.CrossRefGoogle Scholar
  32. 32.
    Senan S, Verstegen N, Haasbeek C, Slotman B, Lagerwaard FJ. Outcomes of stereotactic body radiotherapy in patients with clinical stage I non-small cell lung cancer who are fit to undergo surgery. J Clin Oncol. 2011;29:Suppl abst 7051.Google Scholar
  33. 33.
    Bush DA, Slater JD, Shin BB, Cheek G, Miller DW, Slater JM. Hypofractionated proton beam radiotherapy for stage I lung cancer. Chest. 2004;126(4):1198–203.CrossRefPubMedGoogle Scholar
  34. 34.
    Nihei K, Ogino T, Ishikura S, Nishimura H. High-dose proton beam therapy for Stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2006;65(1):107–11.CrossRefPubMedGoogle Scholar
  35. 35.
    Hata M, Tokuuye K, Kagei K, Sugahara S, Nakayama H, Fukumitsu N, et al. Hypofractionated high-dose proton beam therapy for stage I non-small-cell lung cancer: preliminary results of a phase I/II clinical study. Int J Radiat Oncol Biol Phys. 2007;68(3):786–93.CrossRefPubMedGoogle Scholar
  36. 36.
    Iwata H, Murakami M, Demizu Y, Miyawaki D, Terashima K, Niwa Y, et al. High-dose proton therapy and carbon-ion therapy for stage I nonsmall cell lung cancer. Cancer. 2010;116(10):2476–85.PubMedGoogle Scholar
  37. 37.
    Westover KD, Seco J, Adams JA, Lanuti M, Choi NC, Engelsman M, et al. Proton SBRT for medically inoperable stage I NSCLC. J Thorac Oncol. 2012;7(6):1021–5.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Miyamoto T, Baba M, Yamamoto N, Koto M, Sugawara T, Yashiro T, et al. Curative treatment of Stage I non-small-cell lung cancer with carbon ion beams using a hypofractionated regimen. Int J Radiat Oncol Biol Phys. 2007;67(3):750–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Miyamoto T, Baba M, Sugane T, Nakajima M, Yashiro T, Kagei K, et al. Carbon ion radiotherapy for stage I non-small cell lung cancer using a regimen of four fractions during 1 week. J Thorac Oncol. 2007;2(10):916–26.CrossRefPubMedGoogle Scholar
  40. 40.
    Okada T, Kamada T, Tsuji H, Mizoe JE, Baba M, Kato S, et al. Carbon ion radiotherapy: clinical experiences at National Institute of Radiological Science (NIRS). J Radiat Res. 2010;51(4):355–64.CrossRefPubMedGoogle Scholar
  41. 41.
    Chang JY, Komaki R, Wen HY, De Gracia B, Bluett JB, McAleer MF, et al. Toxicity and patterns of failure of adaptive/ablative proton therapy for early-stage, medically inoperable non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2011;80:1350–7.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Shioyama Y, Tokuuye K, Okumura T, Kagei K, Sugahara S, Ohara K, et al. Clinical evaluation of proton radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2003;56(1):7–13.CrossRefPubMedGoogle Scholar
  43. 43.
    Nakayama H, Satoh H, Sugahara S, Kurishima K, Tsuboi K, Sakurai H, et al. Proton beam therapy of Stage II and III non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2011;81(4):979–84.CrossRefPubMedGoogle Scholar
  44. 44.
    Sejpal S, Komaki R, Tsao A, Chang JY, Liao Z, Wei X, et al. Early findings on toxicity of proton beam therapy with concurrent chemotherapy for nonsmall cell lung cancer. Cancer. 2011;117(13):3004–13.CrossRefPubMedGoogle Scholar
  45. 45.
    Chang JY, Komaki R, Lu C, Wen HY, Allen PK, Tsao A, et al. Phase 2 study of high-dose proton therapy with concurrent chemotherapy for unresectable stage III nonsmall cell lung cancer. Cancer. 2011;117(20):4707–13.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Taddei PJ, Howell RM, Krishnan S, Scarboro SB, Mirkovic D, Newhauser WD. Risk of second malignant neoplasm following proton versus intensity-modulated photon radiotherapies for hepatocellular carcinoma. Phys Med Biol. 2010;55(23):7055–65.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Skinner HD, Hong TS, Krishnan S. Charged-particle therapy for hepatocellular carcinoma. Semin Radiat Oncol. 2011;21(4):278–86.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Hata M, Tokuuye K, Sugahara S, Kagei K, Igaki H, Hashimoto T, et al. Proton beam therapy for hepatocellular carcinoma with portal vein tumor thrombus. Cancer. 2005;104(4):794–801.CrossRefPubMedGoogle Scholar
  49. 49.
    Wang X, Krishnan S, Zhang X, Dong L, Briere T, Crane CH, et al. Proton radiotherapy for liver tumors: dosimetric advantages over photon plans. Med Dosim. 2008;33(4):259–67.CrossRefPubMedGoogle Scholar
  50. 50.
    Mizumoto M, Tokuuye K, Sugahara S, Nakayama H, Fukumitsu N, Ohara K, et al. Proton beam therapy for hepatocellular carcinoma adjacent to the porta hepatis. Int J Radiat Oncol Biol Phys. 2008;71(2):462–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Hata M, Tokuuye K, Sugahara S, Fukumitsu N, Hashimoto T, Ohnishi K, et al. Proton beam therapy for hepatocellular carcinoma with limited treatment options. Cancer. 2006;107(3):591–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Sugahara S, Oshiro Y, Nakayama H, Fukuda K, Mizumoto M, Abei M, et al. Proton beam therapy for large hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2010;76(2):460–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Fukumitsu N, Sugahara S, Nakayama H, Fukuda K, Mizumoto M, Abei M, et al. A prospective study of hypofractionated proton beam therapy for patients with hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2009;74(3):831–6.CrossRefPubMedGoogle Scholar
  54. 54.
    Bush DA, Hillebrand DJ, Slater JM, Slater JD. High-dose proton beam radiotherapy of hepatocellular carcinoma: preliminary results of a phase II trial. Gastroenterology. 2004;127(5 Suppl 1):S189–93.CrossRefPubMedGoogle Scholar
  55. 55.
    Kato H, Yamada S, Yasuda S, Yamaguchi K, Ohno I, Ohto M, et al. Four-fraction carbon ion radiotherapy for hepatocellular carcinoma. J Clin Oncol. 2004;22:4090. ASCO Annual Meeting Proceedings (Post-Meeting Edition) (14S).Google Scholar
  56. 56.
    Imada H, Kato H, Yasuda S, Yamada S, Yanagi T, Kishimoto R, et al. Comparison of efficacy and toxicity of short-course carbon ion radiotherapy for hepatocellular carcinoma depending on their proximity to the porta hepatis. Radiother Oncol. 2010;96(2):231–5.CrossRefPubMedGoogle Scholar
  57. 57.
    Imada H, Yasuda S, Shinoto M, et al. Carbon ion radiotherapy for liver cancer. In: Proceedings of NIRS-ETOILE second joint symposium on carbon ion radiotherapy. Centre Etoile, Lyon: NIRS-M-243; 2011. p. 46–53.Google Scholar
  58. 58.
    Tsujii H, Kamada T. A review of update clinical results of carbon ion radiotherapy. Jpn J Clin Oncol. 2012;42(8):670–85.PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Levy RP, Schulte RW, Slater JD, Miller DW, Slater JM. Stereotactic radiosurgery—the role of charged particles. Acta Oncol. 1999;38(2):165–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Hattangadi JA, Chapman PH, Bussiere MR, Niemierko A, Ogilvy CS, Rowell A, et al. Planned two-fraction proton beam stereotactic radiosurgery for high-risk inoperable cerebral arteriovenous malformations. Int J Radiat Oncol Biol Phys. 2012;83(2):533–41.CrossRefPubMedGoogle Scholar
  61. 61.
    Harsh GR, Thornton AF, Chapman PH, Bussiere MR, Rabinov JD, Loeffler JS. Proton beam stereotactic radiosurgery of vestibular schwannomas. Int J Radiat Oncol Biol Phys. 2002;54(1):35–44.CrossRefPubMedGoogle Scholar
  62. 62.
    Murphy ES, Suh JH. Radiotherapy for vestibular schwannomas: a critical review. Int J Radiat Oncol Biol Phys. 2011;79(4):985–97.CrossRefPubMedGoogle Scholar
  63. 63.
    Vernimmen FJ, Mohamed Z, Slabbert JP, Wilson J. Long-term results of stereotactic proton beam radiotherapy for acoustic neuromas. Radiother Oncol. 2009;90(2):208–12.CrossRefPubMedGoogle Scholar
  64. 64.
    Halasz LM, Bussiere MR, Dennis ER, Niemierko A, Chapman PH, Loeffler JS, et al. Proton stereotactic radiosurgery for the treatment of benign meningiomas. Int J Radiat Oncol Biol Phys. 2011;81(5):1428–35.CrossRefPubMedGoogle Scholar
  65. 65.
    Petit JH, Biller BM, Coen JJ, Swearingen B, Ancukiewicz M, Bussiere M, et al. Proton stereotactic radiosurgery in management of persistent acromegaly. Endocr Pract. 2007;13(7):726–34.CrossRefPubMedGoogle Scholar
  66. 66.
    Petit JH, Biller BM, Yock TI, Swearingen B, Coen JJ, Chapman P, et al. Proton stereotactic radiotherapy for persistent adrenocorticotropin-producing adenomas. J Clin Endocrinol Metab. 2008;93(2):393–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Lodge M, Pijls-Johannesma M, Stirk L, Munro AJ, De Ruysscher D, Jefferson T. A systematic literature review of the clinical and cost-effectiveness of hadron therapy in cancer. Radiother Oncol. 2007;83(2):110–22.CrossRefPubMedGoogle Scholar
  68. 68.
    Konski A, Speier W, Hanlon A, Beck JR, Pollack A. Is proton beam therapy cost effective in the treatment of adenocarcinoma of the prostate? J Clin Oncol. 2007;25(24):3603–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Peeters A, Grutters JP, Pijls-Johannesma M, Reimoser S, De Ruysscher D, Severens JL, et al. How costly is particle therapy? Cost analysis of external beam radiotherapy with carbon-ions, protons and photons. Radiother Oncol. 2010;95(1):45–53.CrossRefPubMedGoogle Scholar
  70. 70.
    Hede K. Research groups promoting proton therapy “lite”. J Natl Cancer Inst. 2006;98(23):1682–4.CrossRefPubMedGoogle Scholar
  71. 71.
    Jones B. The case for particle therapy. Br J Radiol. 2006;79(937):24–31.CrossRefPubMedGoogle Scholar
  72. 72.
    Jiang H, Seco J, Paganetti H. Effects of Hounsfield number conversion on CT based proton Monte Carlo dose calculations. Med Phys. 2007;34(4):1439–49.PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Andreo P. On the clinical spatial resolution achievable with protons and heavier charged particle radiotherapy beams. Phys Med Biol. 2009;54(11):N205–15.CrossRefPubMedGoogle Scholar
  74. 74.
    Carabe A, Moteabbed M, Depauw N, Schuemann J, Paganetti H. Range uncertainty in proton therapy due to variable biological effectiveness. Phys Med Biol. 2012;57(5):1159–72.CrossRefPubMedGoogle Scholar
  75. 75.
    Paganetti H. Nuclear interactions in proton therapy: dose and relative biological effect distributions originating from primary and secondary particles. Phys Med Biol. 2002;47(5):747–64.CrossRefPubMedGoogle Scholar
  76. 76.
    Brenner DJ, Hall EJ. Secondary neutrons in clinical proton radiotherapy: a charged issue. Radiother Oncol. 2008;86(2):165–70.CrossRefPubMedGoogle Scholar
  77. 77.
    Miralbell R, Lomax A, Cella L, Schneider U. Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. Int J Radiat Oncol Biol Phys. 2002;54(3):824–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Radiation OncologyBanner MD Anderson Cancer CenterGilbertUSA
  2. 2.Department of Radiation OncologyThe University of Texas M.D. Anderson Cancer CenterHoustonUSA

Personalised recommendations