Skip to main content

Staphyloma: Part 1

  • Chapter
  • First Online:

Abstract

Highly myopic eyes may have shape distortion where there is a local deviation in curvature of the posterior portion of the eye as compared with the surrounding eye wall. When these distortions are manifested by an outpouching of the eye with associated uveal tissue, they are known as a staphyloma. Localized expansion of the choroid, retinal pigment epithelium, and retina may lead to a variety of stereotypical pathologies recognized in high myopes for one and a half centuries. The history of staphyloma research, concepts of staphyloma formation, and hypotheses of staphyloma formation are presented. Special problems in highly myopic eyes attributed to staphylomas are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Scarpa A. Chapter 17. Dello Stafiloma. Practical observations on the principal diseases of the eyes. Pravia: Presso Baldassare Comino; 1801. p. 215–28.

    Google Scholar 

  2. Lawrence W. Section III. Staphyloma scleroticae. In: A treatise of the diseases of the eye. 3rd ed. London: Henry G. Bohn; 1844. p. 337–9.

    Google Scholar 

  3. Arlt F. Die Krankenheiten des Auges fur praktische Artze. Prague: F.A. Credner; 1859.

    Google Scholar 

  4. Arlt F. Über die Ursachen und die Entstehung der Kurzsichtigkeit. Vienna: Wilhelm Braumueller; 1876.

    Google Scholar 

  5. Tscherning M. Studien über die Aetiologie der Myopie. Graefes Archive for Clinical and Experimental Ophthalmology. 1883;29:201–72.

    Article  Google Scholar 

  6. Schnabel I. The anatomy of staphyloma posticum, and the relationship of the condition to myopia. In: Norris WF, Oliver CA, editors. System of diseases of the eye, Local diseases, glaucoma, wounds and injuries, operations, vol. 3. Philadelphia: J.B. Lippincott Co; 1898. p. 395–411.

    Google Scholar 

  7. Souter WN. Posterior staphyloma in the refraction and motility of the eye. For students and practitioners. Philadelphia: Lea Brothers & Co; 1903. p. 249–55.

    Google Scholar 

  8. Knowles RH. An encyclopedia-dictionary and reference handbook of the ophthalmic sciences. New York: The Jewelers Circular Publishing Company; 1903.

    Google Scholar 

  9. Curtin BJ, Karlin DB. Axial length measurements and fundus changes of the myopic eye. Part 1. The posterior fundus. Trans Am Opthalmal Soc. 1970;68:312–34.

    CAS  Google Scholar 

  10. Curtin BJ. The posterior staphyloma of pathologic myopia. Trans Am Ophthalmol Soc. 1977;75:67–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Moriyama M, Ohno-Matsui K, Modegi T, et al. Quantitative analyses of high-resolution 3D MR images of highly myopic eyes to determine their shapes. Invest Ophthalmol Vis Sci. 2012;53(8):4510–8.

    Article  PubMed  Google Scholar 

  12. Gaucher D, Erginay A, Lecleire-Collet A, et al. Dome-shaped macula in eyes with myopic posterior staphyloma. Am J Ophthalmol. 2008;145:909–14.

    Article  PubMed  Google Scholar 

  13. Ikuno Y, Tano Y. Retinal and choroidal biometry in highly myopic eyes with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2009;50(8):3876–80.

    Article  PubMed  Google Scholar 

  14. Hsiang HW, Ohno-Matsui K, Shimada N, Hayashi K, Moriyama M, Yoshida T, Tokoro T, Mochizuki M. Clinical characteristics of posterior staphyloma in eyes with pathologic myopia. Am J Ophthalmol. 2008;146(1):102–10.

    Article  PubMed  Google Scholar 

  15. Young FA. The effect of nearwork illumination level on monkey refraction. Am J Optom Arch Am Acad Optom. 1962;39:60–7.

    Article  CAS  PubMed  Google Scholar 

  16. Shen W, Vijayan M, Sivak JG. Inducing form-deprivation myopia in fish. Invest Ophthalmol Vis Sci. 2005;46(5):1797–803.

    Article  PubMed  Google Scholar 

  17. Wallman J, Gottlieb MD, Rajaram V, Fugate-Wentzek LA. Local retinal regions control local eye growth and myopia. Science. 1987;237(4810):73–7.

    Article  CAS  PubMed  Google Scholar 

  18. Smith 3rd EL, Hung LF, Huang J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. Vision Res. 2009;49(19):2386–92.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Schaeffel F, Glasser A, Howland HC. Accommodation, refractive error, and eye growth in chickens. Vision Res. 1988;28:639–57.

    Article  CAS  PubMed  Google Scholar 

  20. Smith 3rd EL, Hung LF. The role of optical defocus in regulating refractive development in infant monkeys. Vision Res. 1999;39:1415–35.

    Article  PubMed  Google Scholar 

  21. Graham B, Judge SJ. The effects of spectacle wear in infancy on eye growth and refractive error in the marmoset (Callithrix jacchus). Vision Res. 1999;39:189–206.

    Article  CAS  PubMed  Google Scholar 

  22. Norton TT, Siegwart JT, Amedo AO. Effectiveness of hyperopic defocus, minimal defocus, or myopic defocus in competition with a myopiagenic stimulus in tree shrew eyes. Invest Ophthalmol Vis Sci. 2006;47:4687–99.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Shen W, Sivak JG. Eyes of a lower vertebrate are susceptible to the visual environment. Invest Ophthalmol Vis Sci. 2007;48:4829–37.

    Article  PubMed  Google Scholar 

  24. Zhu X, Park TW, Winawer J, Wallman J. In a matter of minutes, the eye can know which way to grow. Invest Ophthalmol Vis Sci. 2005;46(7):2238–41.

    Article  PubMed  Google Scholar 

  25. Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29(2):144–68.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Fitzgerald ME, Wildsoet CF, Reiner A. Temporal relationship of choroidal blood flow and thickness changes during recovery from form deprivation myopia in chicks. Exp Eye Res. 2002;74(5):561–70.

    Article  CAS  PubMed  Google Scholar 

  27. Hirata A, Negi A. Morphological changes of choriocapillaris in experimentally induced chick myopia. Graefes Arch Clin Exp Ophthalmol. 1998;236(2):132–7.

    Article  CAS  PubMed  Google Scholar 

  28. Read SA, Collins MJ, Sander BP. Human optical axial length and defocus. Invest Ophthalmol Vis Sci. 2010;51:6262–9.

    Article  PubMed  Google Scholar 

  29. Smith 3rd EL, Huang J, Hung LF, Blasdel TL, Humbird TL, Bockhorst KH. Hemiretinal form deprivation: evidence for local control of eye growth and refractive development in infant monkeys. Invest Ophthalmol Vis Sci. 2009;50(11):5057–69.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Smith 3rd EL, Hung LF, Huang J, Blasdel TL, Humbird TL, Bockhorst KH. Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms. Invest Ophthalmol Vis Sci. 2010;51(8):3864–73.

    Article  PubMed  Google Scholar 

  31. Smith 3rd EL, Ramamirtham R, Qiao-Grider Y, Hung LF, Huang J, Kee CS, Coats D, Paysse E. Effects of foveal ablation on emmetropization and form-deprivation myopia. Invest Ophthalmol Vis Sci. 2007;48(9):3914–22.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Smith 3rd EL. Prentice Award Lecture 2010: a case for peripheral optical treatment strategies for myopia. Optom Vis Sci. 2011;88(9):1029–44.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Phillips JR, McBrien NA. Form deprivation myopia: elastic properties of sclera. Ophthalmic Physiol Opt. 1995;15:357–62.

    Article  CAS  PubMed  Google Scholar 

  34. McBrien NA, Gentle A. Role of the sclera in the development and pathological complications of myopia. Prog Retin Eye Res. 2003;22(3):307–38.

    Article  CAS  PubMed  Google Scholar 

  35. McBrien NA, Cornell LM, Gentle A. Structural and ultrastructural changes to the sclera in a mammalian model of high myopia. Invest Ophthalmol Vis Sci. 2001;42(10):2179–87.

    CAS  PubMed  Google Scholar 

  36. McBrien NA, Adams DW. A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings. Invest Ophthalmol Vis Sci. 1997;38(2):321–33.

    CAS  PubMed  Google Scholar 

  37. Saka N, Ohno-Matsui K, Shimada N, Sueyoshi S, Nagaoka N, Hayashi W, Hayashi K, Moriyama M, Kojima A, Yasuzumi K, Yoshida T, Tokoro T, Mochizuki M. Long-term changes in axial length in adult eyes with pathologic myopia. Am J Ophthalmol. 2010;150(4):562–8.e1.

    Article  PubMed  Google Scholar 

  38. Rose KA, Morgan IG, Smith W, Burlutsky G, Mitchell P, Saw SM. Myopia, lifestyle, and schooling in students of Chinese ethnicity in Singapore and Sydney. Arch Ophthalmol. 2008;126(4):527–30.

    Article  PubMed  Google Scholar 

  39. Jones LA, Sinnott LT, Mutti DO, Mitchell GL, Moeschberger ML, Zadnik K. Parental history of myopia, sports and outdoor activities, and future myopia. Invest Ophthalmol Vis Sci. 2007;48(8):3524–32.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Dirani M, Tong L, Gazzard G, Zhang X, Chia A, Young TL, Rose KA, Mitchell P, Saw SM. Outdoor activity and myopia in Singapore teenage children. Br J Ophthalmol. 2009;93(8):997–1000.

    Article  CAS  PubMed  Google Scholar 

  41. Morgan RW, Speakman JS, Grimshaw SE. Inuit myopia: an environmentally induced “epidemic”? Can Med Assoc J. 1975;112(5):575–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Alward WL, Bender TR, Demske JA, Hall DB. High prevalence of myopia among young adult Yupik Eskimos. Can J Ophthalmol. 1985;20(7):241–5.

    CAS  PubMed  Google Scholar 

  43. Lv L, Zhang Z. Pattern of myopia progression in Chinese medical students: a two-year follow-up study. Graefes Arch Clin Exp Ophthalmol. 2013;251(1):163–8.

    Article  PubMed  Google Scholar 

  44. Mutti DO, Mitchell GL, Moeschberger ML, Jones LA, Zadnik K. Parental myopia, near work, school achievement, and children’s refractive error. Invest Ophthalmol Vis Sci. 2002;43:3633–40.

    PubMed  Google Scholar 

  45. Zylbermann R, Landau D, Berson D. The influence of study habits on myopia in Jewish teenagers. J Pediatr Ophthalmol Strabismus. 1993;30:319–22.

    CAS  PubMed  Google Scholar 

  46. Hepsen IF, Evereklioglu C, Bayramlar H. The effect of reading and near-work on the development of myopia in emmetropic boys: a prospective, controlled, three-year follow-up study. Vision Res. 2001;41:2511–20.

    Article  CAS  PubMed  Google Scholar 

  47. Kinge B, Midelfart A, Jacobsen G, Rystad J. The influence of near-work on development of myopia among university students: a three-year longitudinal study among engineering students in Norway. Acta Ophthalmol Scand. 2000;78:26–9.

    Article  CAS  PubMed  Google Scholar 

  48. Rose KA, Morgan IG, Ip J, et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology. 2008;115:1279–85.

    Article  PubMed  Google Scholar 

  49. Rucker FJ, Wallman J. Chick eyes compensate for chromatic simulations of hyperopic and myopic defocus: evidence that the eye uses longitudinal chromatic aberration to guide eye-growth. Vision Res. 2009;49(14):1775–83.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Young SE, Walsh FB, Knox DL. The tilted disk syndrome. Am J Ophthalmol. 1976;82:16–23.

    CAS  PubMed  Google Scholar 

  51. Prost M, De Laey JJ. Choroidal neovascularization in tilted disc syndrome. Int Ophthalmol. 1988;12(2):131–5.

    Article  CAS  PubMed  Google Scholar 

  52. Quaranta M, Brindeau C, Coscas G, Soubrane G. Multiple choroidal neovascularizations at the border of a myopic posterior macular staphyloma. Graefes Arch Clin Exp Ophthalmol. 2000;238:101–3.

    CAS  PubMed  Google Scholar 

  53. Cohen SY, Quentel G, Guiberteau B, Delahaye-Mazza C, Gaudric A. Macular serous retinal detachment caused by subretinal leakage in tilted disc syndrome. Ophthalmology. 1998;105:1831–4.

    Article  CAS  PubMed  Google Scholar 

  54. Cohen SY, Quentel G. Chorioretinal folds as a consequence of inferior staphyloma associated with tilted disc syndrome. Graefes Arch Clin Exp Ophthalmol. 2006;244:1536–8.

    Article  PubMed  Google Scholar 

  55. Becquet F, Ducournau D, Ducournau Y, Goffart Y, Spencer WH. Juxtapapillary subretinal pigment epithelial polypoid pseudocysts associated with unilateral tilted optic disc: case report with clinicopathologic correlation. Ophthalmology. 2001;108(9):1657–62.

    Article  CAS  PubMed  Google Scholar 

  56. Mauget-Faÿsse M, Cornut PL, Quaranta El-Maftouhi M, Leys A. Polypoidal choroidal vasculopathy in tilted disk syndrome and high myopia with staphyloma. Am J Ophthalmol. 2006;142(6):970–5.

    Article  PubMed  Google Scholar 

  57. Cohen SY, Quentel G. Uneven distribution of drusen in tilted disc syndrome. Retina. 2008;28(9):1361–2.

    Article  PubMed  Google Scholar 

  58. Vuori ML, Mäntyjärvi M. Tilted disc syndrome may mimic false visual field deterioration. Acta Ophthalmol. 2008;86(6):622–5.

    Article  PubMed  Google Scholar 

  59. Nakanishi H, Tsujikawa A, Gotoh N, et al. Macular complications on the border of an inferior staphyloma associated with tilted disc syndrome. Retina. 2008;28(10):1493–501.

    Article  PubMed  Google Scholar 

  60. Cohen SY, Dubois L, Ayrault S, Quentel G. T-shaped pigmentary changes in tilted disk syndrome. Eur J Ophthalmol. 2009;19(5):876–9.

    PubMed  Google Scholar 

  61. Ohno-Matsui K, Shimada N, Nagaoka N, Tokoro T, Mochizuki M. Choroidal folds radiating from the edge of an inferior staphyloma in an eye with tilted disc syndrome. Jpn J Ophthalmol. 2011;55(2):171–3.

    Article  PubMed  Google Scholar 

  62. Maruko I, Iida T, Sugano Y, Oyamada H, Sekiryu T. Morphologic choroidal and scleral changes at the macula in tilted disc syndrome with staphyloma using optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(12):8763–8.

    Article  PubMed  Google Scholar 

  63. Spaide RF, Fisher Y. Removal of adherent cortical vitreous plaques without removing the internal limiting membrane in the repair of macular detachments in highly myopic eyes. Retina. 2005;25(3):290–5.

    Article  PubMed  Google Scholar 

  64. Westheimer G. Entoptic visualization of Stiles-Crawford effect. An indicator of eyeball shape. Arch Ophthalmol. 1968;79(5):584–8.

    Article  CAS  PubMed  Google Scholar 

  65. Mäntyjärvi M, Tuppurainen K. Colour vision and dark adaptation in high myopia without central retinal degeneration. Br J Ophthalmol. 1995;79(2):105–8.

    Article  PubMed  Google Scholar 

  66. Mehdizadeh M, Nowroozzadeh MH. Dome-shaped macula in eyes with myopic posterior staphyloma. Am J Ophthalmol. 2008;146:478; author reply −9.

    Article  PubMed  Google Scholar 

  67. Imamura Y, Iida T, Maruko I, et al. Enhanced depth imaging optical coherence tomography of the sclera in dome-shaped macula. Am J Ophthalmol. 2011;151:297–302.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard F. Spaide MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Spaide, R.F. (2014). Staphyloma: Part 1. In: Spaide, R., Ohno-Matsui, K., Yannuzzi, L. (eds) Pathologic Myopia. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8338-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8338-0_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8337-3

  • Online ISBN: 978-1-4614-8338-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics