Staphyloma: Part 1

Chapter

Abstract

Highly myopic eyes may have shape distortion where there is a local deviation in curvature of the posterior portion of the eye as compared with the surrounding eye wall. When these distortions are manifested by an outpouching of the eye with associated uveal tissue, they are known as a staphyloma. Localized expansion of the choroid, retinal pigment epithelium, and retina may lead to a variety of stereotypical pathologies recognized in high myopes for one and a half centuries. The history of staphyloma research, concepts of staphyloma formation, and hypotheses of staphyloma formation are presented. Special problems in highly myopic eyes attributed to staphylomas are discussed.

Keywords

Depression Retina Fibril Refraction Fluorescein 

References

  1. 1.
    Scarpa A. Chapter 17. Dello Stafiloma. Practical observations on the principal diseases of the eyes. Pravia: Presso Baldassare Comino; 1801. p. 215–28.Google Scholar
  2. 2.
    Lawrence W. Section III. Staphyloma scleroticae. In: A treatise of the diseases of the eye. 3rd ed. London: Henry G. Bohn; 1844. p. 337–9.Google Scholar
  3. 3.
    Arlt F. Die Krankenheiten des Auges fur praktische Artze. Prague: F.A. Credner; 1859.Google Scholar
  4. 4.
    Arlt F. Über die Ursachen und die Entstehung der Kurzsichtigkeit. Vienna: Wilhelm Braumueller; 1876.Google Scholar
  5. 5.
    Tscherning M. Studien über die Aetiologie der Myopie. Graefes Archive for Clinical and Experimental Ophthalmology. 1883;29:201–72.CrossRefGoogle Scholar
  6. 6.
    Schnabel I. The anatomy of staphyloma posticum, and the relationship of the condition to myopia. In: Norris WF, Oliver CA, editors. System of diseases of the eye, Local diseases, glaucoma, wounds and injuries, operations, vol. 3. Philadelphia: J.B. Lippincott Co; 1898. p. 395–411.Google Scholar
  7. 7.
    Souter WN. Posterior staphyloma in the refraction and motility of the eye. For students and practitioners. Philadelphia: Lea Brothers & Co; 1903. p. 249–55.Google Scholar
  8. 8.
    Knowles RH. An encyclopedia-dictionary and reference handbook of the ophthalmic sciences. New York: The Jewelers Circular Publishing Company; 1903.Google Scholar
  9. 9.
    Curtin BJ, Karlin DB. Axial length measurements and fundus changes of the myopic eye. Part 1. The posterior fundus. Trans Am Opthalmal Soc. 1970;68:312–34.Google Scholar
  10. 10.
    Curtin BJ. The posterior staphyloma of pathologic myopia. Trans Am Ophthalmol Soc. 1977;75:67–86.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Moriyama M, Ohno-Matsui K, Modegi T, et al. Quantitative analyses of high-resolution 3D MR images of highly myopic eyes to determine their shapes. Invest Ophthalmol Vis Sci. 2012;53(8):4510–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Gaucher D, Erginay A, Lecleire-Collet A, et al. Dome-shaped macula in eyes with myopic posterior staphyloma. Am J Ophthalmol. 2008;145:909–14.PubMedCrossRefGoogle Scholar
  13. 13.
    Ikuno Y, Tano Y. Retinal and choroidal biometry in highly myopic eyes with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2009;50(8):3876–80.PubMedCrossRefGoogle Scholar
  14. 14.
    Hsiang HW, Ohno-Matsui K, Shimada N, Hayashi K, Moriyama M, Yoshida T, Tokoro T, Mochizuki M. Clinical characteristics of posterior staphyloma in eyes with pathologic myopia. Am J Ophthalmol. 2008;146(1):102–10.PubMedCrossRefGoogle Scholar
  15. 15.
    Young FA. The effect of nearwork illumination level on monkey refraction. Am J Optom Arch Am Acad Optom. 1962;39:60–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Shen W, Vijayan M, Sivak JG. Inducing form-deprivation myopia in fish. Invest Ophthalmol Vis Sci. 2005;46(5):1797–803.PubMedCrossRefGoogle Scholar
  17. 17.
    Wallman J, Gottlieb MD, Rajaram V, Fugate-Wentzek LA. Local retinal regions control local eye growth and myopia. Science. 1987;237(4810):73–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Smith 3rd EL, Hung LF, Huang J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. Vision Res. 2009;49(19):2386–92.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Schaeffel F, Glasser A, Howland HC. Accommodation, refractive error, and eye growth in chickens. Vision Res. 1988;28:639–57.PubMedCrossRefGoogle Scholar
  20. 20.
    Smith 3rd EL, Hung LF. The role of optical defocus in regulating refractive development in infant monkeys. Vision Res. 1999;39:1415–35.PubMedCrossRefGoogle Scholar
  21. 21.
    Graham B, Judge SJ. The effects of spectacle wear in infancy on eye growth and refractive error in the marmoset (Callithrix jacchus). Vision Res. 1999;39:189–206.PubMedCrossRefGoogle Scholar
  22. 22.
    Norton TT, Siegwart JT, Amedo AO. Effectiveness of hyperopic defocus, minimal defocus, or myopic defocus in competition with a myopiagenic stimulus in tree shrew eyes. Invest Ophthalmol Vis Sci. 2006;47:4687–99.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Shen W, Sivak JG. Eyes of a lower vertebrate are susceptible to the visual environment. Invest Ophthalmol Vis Sci. 2007;48:4829–37.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhu X, Park TW, Winawer J, Wallman J. In a matter of minutes, the eye can know which way to grow. Invest Ophthalmol Vis Sci. 2005;46(7):2238–41.PubMedCrossRefGoogle Scholar
  25. 25.
    Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29(2):144–68.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Fitzgerald ME, Wildsoet CF, Reiner A. Temporal relationship of choroidal blood flow and thickness changes during recovery from form deprivation myopia in chicks. Exp Eye Res. 2002;74(5):561–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Hirata A, Negi A. Morphological changes of choriocapillaris in experimentally induced chick myopia. Graefes Arch Clin Exp Ophthalmol. 1998;236(2):132–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Read SA, Collins MJ, Sander BP. Human optical axial length and defocus. Invest Ophthalmol Vis Sci. 2010;51:6262–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Smith 3rd EL, Huang J, Hung LF, Blasdel TL, Humbird TL, Bockhorst KH. Hemiretinal form deprivation: evidence for local control of eye growth and refractive development in infant monkeys. Invest Ophthalmol Vis Sci. 2009;50(11):5057–69.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Smith 3rd EL, Hung LF, Huang J, Blasdel TL, Humbird TL, Bockhorst KH. Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms. Invest Ophthalmol Vis Sci. 2010;51(8):3864–73.PubMedCrossRefGoogle Scholar
  31. 31.
    Smith 3rd EL, Ramamirtham R, Qiao-Grider Y, Hung LF, Huang J, Kee CS, Coats D, Paysse E. Effects of foveal ablation on emmetropization and form-deprivation myopia. Invest Ophthalmol Vis Sci. 2007;48(9):3914–22.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Smith 3rd EL. Prentice Award Lecture 2010: a case for peripheral optical treatment strategies for myopia. Optom Vis Sci. 2011;88(9):1029–44.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Phillips JR, McBrien NA. Form deprivation myopia: elastic properties of sclera. Ophthalmic Physiol Opt. 1995;15:357–62.PubMedCrossRefGoogle Scholar
  34. 34.
    McBrien NA, Gentle A. Role of the sclera in the development and pathological complications of myopia. Prog Retin Eye Res. 2003;22(3):307–38.PubMedCrossRefGoogle Scholar
  35. 35.
    McBrien NA, Cornell LM, Gentle A. Structural and ultrastructural changes to the sclera in a mammalian model of high myopia. Invest Ophthalmol Vis Sci. 2001;42(10):2179–87.PubMedGoogle Scholar
  36. 36.
    McBrien NA, Adams DW. A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings. Invest Ophthalmol Vis Sci. 1997;38(2):321–33.PubMedGoogle Scholar
  37. 37.
    Saka N, Ohno-Matsui K, Shimada N, Sueyoshi S, Nagaoka N, Hayashi W, Hayashi K, Moriyama M, Kojima A, Yasuzumi K, Yoshida T, Tokoro T, Mochizuki M. Long-term changes in axial length in adult eyes with pathologic myopia. Am J Ophthalmol. 2010;150(4):562–8.e1.PubMedCrossRefGoogle Scholar
  38. 38.
    Rose KA, Morgan IG, Smith W, Burlutsky G, Mitchell P, Saw SM. Myopia, lifestyle, and schooling in students of Chinese ethnicity in Singapore and Sydney. Arch Ophthalmol. 2008;126(4):527–30.PubMedCrossRefGoogle Scholar
  39. 39.
    Jones LA, Sinnott LT, Mutti DO, Mitchell GL, Moeschberger ML, Zadnik K. Parental history of myopia, sports and outdoor activities, and future myopia. Invest Ophthalmol Vis Sci. 2007;48(8):3524–32.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Dirani M, Tong L, Gazzard G, Zhang X, Chia A, Young TL, Rose KA, Mitchell P, Saw SM. Outdoor activity and myopia in Singapore teenage children. Br J Ophthalmol. 2009;93(8):997–1000.PubMedCrossRefGoogle Scholar
  41. 41.
    Morgan RW, Speakman JS, Grimshaw SE. Inuit myopia: an environmentally induced “epidemic”? Can Med Assoc J. 1975;112(5):575–7.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Alward WL, Bender TR, Demske JA, Hall DB. High prevalence of myopia among young adult Yupik Eskimos. Can J Ophthalmol. 1985;20(7):241–5.PubMedGoogle Scholar
  43. 43.
    Lv L, Zhang Z. Pattern of myopia progression in Chinese medical students: a two-year follow-up study. Graefes Arch Clin Exp Ophthalmol. 2013;251(1):163–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Mutti DO, Mitchell GL, Moeschberger ML, Jones LA, Zadnik K. Parental myopia, near work, school achievement, and children’s refractive error. Invest Ophthalmol Vis Sci. 2002;43:3633–40.PubMedGoogle Scholar
  45. 45.
    Zylbermann R, Landau D, Berson D. The influence of study habits on myopia in Jewish teenagers. J Pediatr Ophthalmol Strabismus. 1993;30:319–22.PubMedGoogle Scholar
  46. 46.
    Hepsen IF, Evereklioglu C, Bayramlar H. The effect of reading and near-work on the development of myopia in emmetropic boys: a prospective, controlled, three-year follow-up study. Vision Res. 2001;41:2511–20.PubMedCrossRefGoogle Scholar
  47. 47.
    Kinge B, Midelfart A, Jacobsen G, Rystad J. The influence of near-work on development of myopia among university students: a three-year longitudinal study among engineering students in Norway. Acta Ophthalmol Scand. 2000;78:26–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Rose KA, Morgan IG, Ip J, et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology. 2008;115:1279–85.PubMedCrossRefGoogle Scholar
  49. 49.
    Rucker FJ, Wallman J. Chick eyes compensate for chromatic simulations of hyperopic and myopic defocus: evidence that the eye uses longitudinal chromatic aberration to guide eye-growth. Vision Res. 2009;49(14):1775–83.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Young SE, Walsh FB, Knox DL. The tilted disk syndrome. Am J Ophthalmol. 1976;82:16–23.PubMedGoogle Scholar
  51. 51.
    Prost M, De Laey JJ. Choroidal neovascularization in tilted disc syndrome. Int Ophthalmol. 1988;12(2):131–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Quaranta M, Brindeau C, Coscas G, Soubrane G. Multiple choroidal neovascularizations at the border of a myopic posterior macular staphyloma. Graefes Arch Clin Exp Ophthalmol. 2000;238:101–3.PubMedGoogle Scholar
  53. 53.
    Cohen SY, Quentel G, Guiberteau B, Delahaye-Mazza C, Gaudric A. Macular serous retinal detachment caused by subretinal leakage in tilted disc syndrome. Ophthalmology. 1998;105:1831–4.PubMedCrossRefGoogle Scholar
  54. 54.
    Cohen SY, Quentel G. Chorioretinal folds as a consequence of inferior staphyloma associated with tilted disc syndrome. Graefes Arch Clin Exp Ophthalmol. 2006;244:1536–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Becquet F, Ducournau D, Ducournau Y, Goffart Y, Spencer WH. Juxtapapillary subretinal pigment epithelial polypoid pseudocysts associated with unilateral tilted optic disc: case report with clinicopathologic correlation. Ophthalmology. 2001;108(9):1657–62.PubMedCrossRefGoogle Scholar
  56. 56.
    Mauget-Faÿsse M, Cornut PL, Quaranta El-Maftouhi M, Leys A. Polypoidal choroidal vasculopathy in tilted disk syndrome and high myopia with staphyloma. Am J Ophthalmol. 2006;142(6):970–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Cohen SY, Quentel G. Uneven distribution of drusen in tilted disc syndrome. Retina. 2008;28(9):1361–2.PubMedCrossRefGoogle Scholar
  58. 58.
    Vuori ML, Mäntyjärvi M. Tilted disc syndrome may mimic false visual field deterioration. Acta Ophthalmol. 2008;86(6):622–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Nakanishi H, Tsujikawa A, Gotoh N, et al. Macular complications on the border of an inferior staphyloma associated with tilted disc syndrome. Retina. 2008;28(10):1493–501.PubMedCrossRefGoogle Scholar
  60. 60.
    Cohen SY, Dubois L, Ayrault S, Quentel G. T-shaped pigmentary changes in tilted disk syndrome. Eur J Ophthalmol. 2009;19(5):876–9.PubMedGoogle Scholar
  61. 61.
    Ohno-Matsui K, Shimada N, Nagaoka N, Tokoro T, Mochizuki M. Choroidal folds radiating from the edge of an inferior staphyloma in an eye with tilted disc syndrome. Jpn J Ophthalmol. 2011;55(2):171–3.PubMedCrossRefGoogle Scholar
  62. 62.
    Maruko I, Iida T, Sugano Y, Oyamada H, Sekiryu T. Morphologic choroidal and scleral changes at the macula in tilted disc syndrome with staphyloma using optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(12):8763–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Spaide RF, Fisher Y. Removal of adherent cortical vitreous plaques without removing the internal limiting membrane in the repair of macular detachments in highly myopic eyes. Retina. 2005;25(3):290–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Westheimer G. Entoptic visualization of Stiles-Crawford effect. An indicator of eyeball shape. Arch Ophthalmol. 1968;79(5):584–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Mäntyjärvi M, Tuppurainen K. Colour vision and dark adaptation in high myopia without central retinal degeneration. Br J Ophthalmol. 1995;79(2):105–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Mehdizadeh M, Nowroozzadeh MH. Dome-shaped macula in eyes with myopic posterior staphyloma. Am J Ophthalmol. 2008;146:478; author reply −9.PubMedCrossRefGoogle Scholar
  67. 67.
    Imamura Y, Iida T, Maruko I, et al. Enhanced depth imaging optical coherence tomography of the sclera in dome-shaped macula. Am J Ophthalmol. 2011;151:297–302.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Vitreous, Retina, Macula Consultants of New YorkNew YorkUSA

Personalised recommendations