Advertisement

Deimination in Alzheimer’s Disease

  • Akihito Ishigami
  • Eun-Kyoung Choi
  • Yong-Sun Kim
  • Naoki Maruyama
Chapter

Abstract

Peptidylarginine deiminases (PADs) are a group of posttranslational modification enzymes that citrullinate (deiminate) protein arginine residues in a calcium ion-dependent manner. Enzymatic citrullination abolishes positive charges of native protein molecules, inevitably causing significant alterations in their structure and functions. Deiminated protein provides the important physiological advantage of forming a cornified layer of skin that covers the human body (see  Chap. 7 for more details). Despite this beneficial function, deimination also has a negative side, because the accumulation of these proteins in the brain is a possible cause of Alzheimer’s disease (AD). In this chapter, we introduce PADs and their protein citrullination function, which is now considered critical for advancing research on aging and neurodegenerative disorders, especially AD.

Keywords

Alzheimer’s disease Aging Astrocyte Cerebellum Citrullinated (deiminated) proteins Glial fibrillary acidic protein Neurodegenerative disorder Peptidylarginine deiminase Purkinje cells Vimentin 

Abbreviations

anti-CCP

Anti-cyclic citrullinated peptide

anti-MVC

Anti-mutated citrullinated vimentin,

AD

Alzheimer’s disease

BAEE

Benzoyl-l-arginine ethyl ester

Bz-l-Arg

Benzoyl-l-arginine

Calbindin

Calbindin-D-28K

CNS

Central nervous system

DAB

3,3′-Diaminobenzidine

GAPDH

Glyceraldehyde-3-phosphate dehydrogenase

GFAP

Glial fibrillary acidic protein

NFT

Neurofibrillary tangles

MAP2

Microtubule-associated protein 2

MBP

Myelin basic protein

Nef3

Neurofilament 3

PAD

Peptidylarginine deiminase

RA

Rheumatoid arthritis

RT-PCR

Reverse transcriptase-polymerase chain reaction

SP

Senile plaque

Notes

Acknowledgements

The excellent editorial assistance of Ms. P. Minick is gratefully acknowledged.

References

  1. Akiyama K, Sakurai Y, Asou H, Senshu T (1999) Localization of peptidylarginine deiminase type II in a stage-specific immature oligodendrocyte from rat cerebral hemisphere. Neurosci Lett 274:53–55PubMedCrossRefGoogle Scholar
  2. Asaga H, Ishigami A (2000) Protein deimination in the rat brain: generation of citrulline-containing proteins in cerebrum perfused with oxygen-deprived media. Biomed Res 21:197–205Google Scholar
  3. Asaga H, Ishigami A (2001) Protein deimination in the rat brain after kainate administration: citrulline-containing proteins as a novel marker of neurodegeneration. Neurosci Lett 299:5–8PubMedCrossRefGoogle Scholar
  4. Asaga H, Senshu T (1993) Combined biochemical and immunocytochemical analyses of postmortem protein deimination in the rat spinal cord. Cell Biol Int 17:525–532PubMedCrossRefGoogle Scholar
  5. Asaga H, Yamada M, Senshu T (1998) Selective deimination of vimentin in calcium ionophore-induced apoptosis of mouse peritoneal macrophages. Biochem Biophys Res Commun 243:641–646PubMedCrossRefGoogle Scholar
  6. Asaga H, Nakashima K, Senshu T, Ishigami A, Yamada M (2001) Immunocytochemical localization of peptidylarginine deiminase in human eosinophils and neutrophils. J Leukoc Biol 70:46–51PubMedGoogle Scholar
  7. Asaga H, Akiyama K, Ohsawa T, Ishigami A (2002) Increased and type II-specific expression of peptidylarginine deiminase in activated microglia but not hyperplastic astrocytes following kainic acid-evoked neurodegeneration in the rat brain. Neurosci Lett 326:129–132PubMedCrossRefGoogle Scholar
  8. Bartzokis G (2004) Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging 25:5–18, author reply 49-62PubMedCrossRefGoogle Scholar
  9. Boyde TR, Rahmatullah M (1980) Optimization of conditions for the colorimetric determination of citrulline, using diacetyl monoxime. Anal Biochem 107:424–431PubMedCrossRefGoogle Scholar
  10. Chavanas S, Mechin MC, Takahara H et al (2004) Comparative analysis of the mouse and human peptidylarginine deiminase gene clusters reveals highly conserved non-coding segments and a new human gene, PADI6. Gene 330:19–27PubMedCrossRefGoogle Scholar
  11. Cheron G, Servais L, Dan B (2008) Cerebellar network plasticity: from genes to fast oscillation. Neuroscience 153:1–19PubMedCrossRefGoogle Scholar
  12. Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11:465–469PubMedCrossRefGoogle Scholar
  13. Erickson MA, Haburcak M, Smukler L, Dunlap K (2007) Altered functional expression of Purkinje cell calcium channels precedes motor dysfunction in tottering mice. Neuroscience 150:547–555PubMedCrossRefGoogle Scholar
  14. Gould RM, Freund CM, Palmer F, Feinstein DL (2000) Messenger RNAs located in myelin sheath assembly sites. J Neurochem 75:1834–1844PubMedCrossRefGoogle Scholar
  15. Guerrin M, Ishigami A, Mechin MC et al (2003) cDNA cloning, gene organization and expression analysis of human peptidylarginine deiminase type I. Biochem J 370:167–174PubMedCrossRefGoogle Scholar
  16. Halvorsen EH, Pollmann S, Gilboe IM et al (2008) Serum IgG antibodies to peptidylarginine deiminase 4 in rheumatoid arthritis and associations with disease severity. Ann Rheum Dis 67:414–417PubMedCrossRefGoogle Scholar
  17. Haun SE, Murphy EJ, Bates CM, Horrocks LA (1992) Extracellular calcium is a mediator of astroglial injury during combined glucose-oxygen deprivation. Brain Res 593:45–50PubMedCrossRefGoogle Scholar
  18. Hossmann KA (1999) The hypoxic brain. insights from ischemia research. Adv Exp Med Biol 474:155–169PubMedGoogle Scholar
  19. Imparl JM, Senshu T, Graves DJ (1995) Studies of calcineurin-calmodulin interaction: probing the role of arginine residues using peptidylarginine deiminase. Arch Biochem Biophys 318:370–377PubMedCrossRefGoogle Scholar
  20. Inagaki M, Takahara H, Nishi Y, Sugawara K, Sato C (1989) Ca2+-dependent deimination-induced disassembly of intermediate filaments involves specific modification of the amino-terminal head domain. J Biol Chem 264:18119–18127PubMedGoogle Scholar
  21. Ishigami A, Ohsawa T, Watanabe K, Senshu T (1996) All-trans retinoic acid increases peptidylarginine deiminases in a newborn rat keratinocyte cell line. Biochem Biophys Res Commun 223:299–303PubMedCrossRefGoogle Scholar
  22. Ishigami A, Kuramoto M, Yamada M, Watanabe K, Senshu T (1998) Molecular cloning of two novel types of peptidylarginine deiminase cDNAs from retinoic acid-treated culture of a newborn rat keratinocyte cell line. FEBS Lett 433:113–118PubMedCrossRefGoogle Scholar
  23. Ishigami A, Asaga H, Ohsawa T, Akiyama K, Maruyama N (2001) Peptidylarginine deiminase type I, type II, type III and type IV are expressed in rat epidermis. Biomed Res 22:63–65Google Scholar
  24. Ishigami A, Ohsawa T, Asaga H, Akiyama K, Kuramoto M, Maruyama N (2002) Human peptidylarginine deiminase type II: molecular cloning, gene organization, and expression in human skin. Arch Biochem Biophys 407:25–31PubMedCrossRefGoogle Scholar
  25. Ishigami A, Ohsawa T, Hiratsuka M et al (2005) Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer’s disease. J Neurosci Res 80:120–128PubMedCrossRefGoogle Scholar
  26. Jang B, Kim E, Choi JK et al (2008) Accumulation of citrullinated proteins by up-regulated peptidylarginine deiminase 2 in brains of scrapie-infected mice: a possible role in pathogenesis. Am J Pathol 173:1129–1142PubMedCrossRefGoogle Scholar
  27. Jang B, Jin JK, Jeon YC et al (2010) Involvement of peptidylarginine deiminase-mediated post-translational citrullination in pathogenesis of sporadic Creutzfeldt-Jakob disease. Acta Neuropathol 119:199–210PubMedCrossRefGoogle Scholar
  28. Jang B, Shin HY, Choi JK et al (2011) Subcellular localization of peptidylarginine deiminase 2 and citrullinated proteins in brains of scrapie-infected mice: nuclear localization of PAD2 and membrane fraction-enriched citrullinated proteins. J Neuropathol Exp Neurol 70:116–124PubMedCrossRefGoogle Scholar
  29. Jang B, Jeon YC, Choi JK et al (2012) Peptidylarginine deiminase modulates the physiological roles of enolase via citrullination: links between altered multifunction of enolase and neurodegenerative diseases. Biochem J 445:183–192PubMedGoogle Scholar
  30. Kanno T, Kawada A, Yamanouchi J et al (2000) Human peptidylarginine deiminase type III: molecular cloning and nucleotide sequence of the cDNA, properties of the recombinant enzyme, and immunohistochemical localization in human skin. J Invest Dermatol 115:813–823PubMedCrossRefGoogle Scholar
  31. Katzman R (1986) Alzheimer’s disease. N Engl J Med 314:964–973PubMedCrossRefGoogle Scholar
  32. Keilhoff G, Prell T, Langnaese K et al (2008) Expression pattern of peptidylarginine deiminase in rat and human Schwann cells. Dev Neurobiol 68:101–114PubMedCrossRefGoogle Scholar
  33. Keller JN, Hanni KB, Markesbery WR (2000) Impaired proteasome function in Alzheimer’s disease. J Neurochem 75:436–439PubMedCrossRefGoogle Scholar
  34. Kubilus J, Baden HP (1983) Purification and properties of a brain enzyme which deiminates proteins. Biochim Biophys Acta 745:285–291PubMedCrossRefGoogle Scholar
  35. Kubilus J, Waitkus RF, Baden HP (1980) Partial purification and specificity of an arginine-converting enzyme from bovine epidermis. Biochim Biophys Acta 615:246–251PubMedCrossRefGoogle Scholar
  36. Lamensa JW, Moscarello MA (1993) Deimination of human myelin basic protein by a peptidylarginine deiminase from bovine brain. J Neurochem 61:987–996PubMedCrossRefGoogle Scholar
  37. Liu YL, Chiang YH, Liu GY, Hung HC (2011) Functional role of dimerization of human peptidylarginine deiminase 4 (PAD4). PLoS One 6:e21314PubMedCrossRefGoogle Scholar
  38. Maccioni RB, Munoz JP, Barbeito L (2001) The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Arch Med Res 32:367–381PubMedCrossRefGoogle Scholar
  39. Mastronardi FG, Wood DD et al (2006) Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: a role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation. J Neurosci 26:11387–11396PubMedCrossRefGoogle Scholar
  40. Matsushita K, Wakamori M, Rhyu IJ et al (2002) Bidirectional alterations in cerebellar synaptic transmission of tottering and rolling Ca2+ channel mutant mice. J Neurosci 22:4388–4398PubMedGoogle Scholar
  41. Moscarello MA, Wood DD, Ackerley C, Boulias C (1994) Myelin in multiple sclerosis is developmentally immature. J Clin Invest 94:146–154PubMedCrossRefGoogle Scholar
  42. Moscarello MA, Pritzker L, Mastronardi FG, Wood DD (2002) Peptidylarginine deiminase: a candidate factor in demyelinating disease. J Neurochem 81:335–343PubMedCrossRefGoogle Scholar
  43. Moscarello MA, Mastronardi FG, Wood DD (2007) The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochem Res 32:251–256PubMedCrossRefGoogle Scholar
  44. Musse AA, Li Z, Ackerley CA et al (2008) Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system. Dis Model Mech 1:229–240PubMedCrossRefGoogle Scholar
  45. Nakashima K, Hagiwara T, Ishigami A et al (1999) Molecular characterization of peptidylarginine deiminase in HL-60 cells induced by retinoic acid and 1α,25-dihydroxyvitamin D3. J Biol Chem 274:27786–27792PubMedCrossRefGoogle Scholar
  46. Nicholas AP (2011) Dual immunofluorescence study of citrullinated proteins in Parkinson diseased substantia nigra. Neurosci Lett 495:26–29PubMedCrossRefGoogle Scholar
  47. Nishijyo T, Kawada A, Kanno T, Shiraiwa M, Takahara H (1997) Isolation and molecular cloning of epidermal- and hair follicle-specific peptidylarginine deiminase (type III) from rat. J Biochem 121:868–875PubMedCrossRefGoogle Scholar
  48. Rogers GE, Simmonds DH (1958) Content of citrulline and other amino acids in a protein of hair follicles. Nature 182:186–187PubMedCrossRefGoogle Scholar
  49. Rus’d AA, Ikejiri Y, Ono H et al (1999) Molecular cloning of cDNAs of mouse peptidylarginine deiminase type I, type III and type IV, and the expression pattern of type I in mouse. Eur J Biochem 259:660–669PubMedCrossRefGoogle Scholar
  50. Senshu T, Sato T, Inoue T, Akiyama K, Asaga H (1992) Detection of citrulline residues in deiminated proteins on polyvinylidene difluoride membrane. Anal Biochem 203:94–100PubMedCrossRefGoogle Scholar
  51. Senshu T, Akiyama K, Kan S, Asaga H, Ishigami A, Manabe M (1995) Detection of deiminated proteins in rat skin: probing with a monospecific antibody after modification of citrulline residues. J Invest Dermatol 105:163–169PubMedCrossRefGoogle Scholar
  52. Senshu T, Akiyama K, Ishigami A, Nomura K (1999) Studies on specificity of peptidylarginine deiminase reactions using an immunochemical probe that recognizes an enzymatically deiminated partial sequence of mouse keratin K1. J Dermatol Sci 21:113–126PubMedCrossRefGoogle Scholar
  53. Serdaroglu M, Cakirbay H, Deger O, Cengiz S, Kul S (2008) The association of anti-CCP antibodies with disease activity in rheumatoid arthritis. Rheumatol Int 28:965–970PubMedCrossRefGoogle Scholar
  54. Servais L, Bearzatto B, Schwaller B et al (2005) Mono- and dual-frequency fast cerebellar oscillation in mice lacking parvalbumin and/or calbindin D-28k. Eur J Neurosci 22:861–870PubMedCrossRefGoogle Scholar
  55. Shimada N, Handa S, Uchida Y et al (2010) Developmental and age-related changes of peptidylarginine deiminase 2 in the mouse brain. J Neurosci Res 88:798–806PubMedGoogle Scholar
  56. Smith MA (1998) Alzheimer disease. Int Rev Neurobiol 42:1–54PubMedGoogle Scholar
  57. Suzuki A, Yamada R, Chang X et al (2003) Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 34:395–402PubMedCrossRefGoogle Scholar
  58. Takizawa Y, Sawada T, Suzuki A, Yamada R, Inoue T, Yamamoto K (2005) Peptidylarginine deiminase 4 (PADI4) identified as a conformation-dependent autoantigen in rheumatoid arthritis. Scand J Rheumatol 34:212–215PubMedCrossRefGoogle Scholar
  59. Tarcsa E, Marekov LN, Mei G, Melino G, Lee S-C, Steinert PM (1996) Protein unfolding by peptidylarginine deiminase. substrate specificity and structural relationships of the natural substrates trichohyalin and filaggrin. J Biol Chem 271:30709–30716PubMedCrossRefGoogle Scholar
  60. Terakawa H, Takahara H, Sugawara K (1991) Three types of mouse peptidylarginine deiminase: characterization and tissue distribution. J Biochem 110:661–666PubMedGoogle Scholar
  61. Tian J, Shi J, Bailey K, Mann DM (2004) Relationships between arteriosclerosis, cerebral amyloid angiopathy and myelin loss from cerebral cortical white matter in Alzheimer’s disease. Neuropathol Appl Neurobiol 30:46–56PubMedCrossRefGoogle Scholar
  62. Tsuchida M, Takahara H, Minami N et al (1993) cDNA nucleotide sequence and primary structure of mouse uterine peptidylarginine deiminase. Detection of a 3′-untranslated nucleotide sequence common to the mRNA of transiently expressed genes and rapid turnover of this enzyme’s mRNA in the estrous cycle. Eur J Biochem 215:677–685PubMedCrossRefGoogle Scholar
  63. Vincent SR, Leung E, Watanabe K (1992) Immunohistochemical localization of peptidylarginine deiminase in the rat brain. J Chem Neuroanat 5:159–168PubMedCrossRefGoogle Scholar
  64. Wagner E, Skoumal M, Bayer PM, Klaushofer K (2009) Antibody against mutated citrullinated vimentin: a new sensitive marker in the diagnosis of rheumatoid arthritis. Rheumatol Int 29:1315–1321PubMedCrossRefGoogle Scholar
  65. Watanabe K, Senshu T (1989) Isolation and characterization of cDNA clones encoding rat skeletal muscle peptidylarginine deiminase. J Biol Chem 264:15255–15260PubMedGoogle Scholar
  66. Watanabe K, Akiyama K, Hikichi K, Ohtsuka R, Okuyama A, Senshu T (1988) Combined biochemical and immunochemical comparison of peptidylarginine deiminases present in various tissues. Biochim Biophys Acta 966:375–383PubMedCrossRefGoogle Scholar
  67. Whitney ER, Kemper TL, Bauman ML, Rosene DL, Blatt GJ (2008) Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: a stereological experiment using calbindin-D28k. Cerebellum 7:406–416PubMedCrossRefGoogle Scholar
  68. Wood DD, Ackerley CA, Brand B et al (2008) Myelin localization of peptidylarginine deiminases 2 and 4: comparison of PAD2 and PAD4 activities. Lab Invest 88:354–364PubMedCrossRefGoogle Scholar
  69. Zarabian B, Koushesh F, Vassef A (1987) Modified methods for measuring citrulline and carbamoyl-β-alanine with reduced light sensitivity and sucrose interference. Anal Biochem 166:113–119PubMedCrossRefGoogle Scholar
  70. Zhao J, Zhao Y, He J, Jia R, Li Z (2008) Prevalence and significance of anti-peptidylarginine deiminase 4 antibodies in rheumatoid arthritis. J Rheumatol 35:969–974PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Akihito Ishigami
    • 1
    • 2
  • Eun-Kyoung Choi
    • 3
  • Yong-Sun Kim
    • 3
  • Naoki Maruyama
    • 1
  1. 1.Tokyo Metropolitan Institute of GerontologyTokyoJapan
  2. 2.Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology (TMIG)Itabashi-kuJapan
  3. 3.Ilsong Institute of Life Science, Hallym UniversityAnyangRepublic of Korea

Personalised recommendations