Skip to main content

Turbo Decoder with Parallel Processing

  • Chapter
  • First Online:
  • 654 Accesses

Abstract

The operating frequency \(\mathcal{F}\) is the decisive factor in throughput calculation of conventional turbo decoders. Although the modification to circuits can improve this factor, there is a limit to the critical path delay, and it is difficult to supply a stable clock signal with high frequency. We need other methods to further raise the decoding speed. The general idea is exploiting parallel architecture, which includes the turbo decoder level, the SISO decoder level, and the trellis stage level [45, 46]. In the turbo decoder level, multiple dedicated turbo decoders are used to decode multiple codeword blocks independently. In the SISO decoder level, every codeword block is split into several sub-blocks first, and then these sub-blocks are processed by multiple SISO decoders simultaneously. In the trellis stage level, the functional units inside the SISO decoder are duplicated to complete the computations related to two or more trellis stages within one clock cycle. This chapter will describe the features of each level. The parallel turbo decoder level is an intuitive method, so we only give a brief introduction. Our discussions center on the parallel SISO decoder level in particular because the turbo codes of 3GPP LTE-Advanced standard and IEEE 802.16m standard, or more precisely, the QPP interleaver in (1.1) and the ARP interleaver in (1.3) are designed to support this type of architecture. The available divisions of one codeword block and the largest parallelism in each application are stated first, then the variations of decoding speed and performance are presented. The parallel trellis stage level needs a minor modification to the decoding algorithm, and it also can be employed by the turbo decoders for above-mentioned standards. Even with the same parallelism, the gains of these levels are dissimilar, and so are their respective costs. Thus, the selection of the best parallel architecture will depend on the required throughput and hardware resource.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding, 3rd Generation Partnership Project Std. TS 36.212 v8.7.0, 2009.

    Google Scholar 

  2. IEEE Standards for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, Inst. Electrical and Electronics Engineers (IEEE) Std. IEEE 802.16e-2005, 2005.

    Google Scholar 

  3. O. Y. Takeshita, “On maximum contention-free interleavers and permutation polynomials over integer rings,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 1249–1253, Mar. 2006.

    Article  MathSciNet  Google Scholar 

  4. C. Berrou, Y. Saouter, C. Douillard, S. Kerouédan et al., “Desiging good permutations for turbo codes: toward a single model,” in IEEE Int. Conf. on Communications, Jun. 2004, pp. 341–345.

    Google Scholar 

  5. S. Yoon and Y. Bar-Ness, “A parallel MAP algorithm for low latency turbo decoding,” IEEE Commun. Lett., vol. 6, no. 7, pp. 288–290, Jul. 2002.

    Article  Google Scholar 

  6. Z. He, P. Fortier, and S. Roy, “Highly-parallel decoding architecture for convolutional turbo codes,” IEEE Trans. VLSI Syst., vol. 14, no. 10, pp. 1147–1151, Oct. 2006.

    Article  Google Scholar 

  7. O. Muller, A. Baghdadi, and M. Jézéquel, “Exploring parallel processing levels for convolutional turbo decoding,” in 2nd Information and Communication Technologies, Apr. 2006, pp. 2353–2358.

    Google Scholar 

  8. E. Boutillon, C. Douillard, and G. Montorsi, “Iterative decoding of concatenated convolutional codes: Implementation issues,” Proc. IEEE, vol. 95, no. 6, pp. 1201–1227, Jun. 2007.

    Article  Google Scholar 

  9. M. J. Thul, N. Wehn, and L. P. Rao, “Enabling high-speed turbo decoding through concurrent interleaving,” in IEEE Proc. Int. Symp. on Circuits and Systems, May 2002, pp. 26–29.

    Google Scholar 

  10. M. J. Thul, F. Gilbert, and N. Wehn, “Concurrent interleaving architecture for high-throughput channel coding,” in IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Apr. 2003, pp. 613–616.

    Google Scholar 

  11. A. Tarable, S. Benedetto, and G. Montorsi, “Mapping interleaving laws to parallel turbo and LDPC decoder architecture,” IEEE Trans. Inf. Theory, vol. 50, no. 9, pp. 2002–2009, Sep. 2004.

    Article  MathSciNet  Google Scholar 

  12. A. Giulietti, L. V. der Perre, and M. Strum, “Parallel turbo coding interleavers: Avoiding collisions in accesses to storage elements,” Elec. Lett., vol. 38, no. 5, pp. 232–234, Feb. 2002.

    Article  Google Scholar 

  13. Z. He, S. Roy, and P. Fortier, “High speed and low power design of parallel turbo decoder,” in IEEE Proc. Int. Symp. on Circuits and Systems, 2005, pp. 6018–6021.

    Google Scholar 

  14. T. K. Lee and B.-Z. Shen, “A flexible memory-mpaaing scheme for parallel turbo decoders with periodic interleavers,” in IEEE Int. Symp. on Information Theory, Jun. 2007, pp. 651–654.

    Google Scholar 

  15. R. Dobkin, M. Peleg, and R. Ginosar, “Parallel VLSI architecure for MAP turbo decoder,” in IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications, Sep. 2002, pp. 15–18.

    Google Scholar 

  16. D. Gnaedig, E. Boutillon, J. Tousch, and M. Jézéquel, “Towards an optimal parallel decoding of turbo codes,” in Proc. 4th Int Symp. on Turbo Codes Related Topics, Apr. 2006.

    Google Scholar 

  17. P. J. Black and T. H. Meng, “A 140 Mb/s, 32-state, radix-4 Viterbi decoder,” pp. 70–71, Feb. 1992.

    Google Scholar 

  18. S. W. Choi and S. S. Choi, “200Mbps Viterbi decoder for UWB,” in Int. Conf. Advanced Communication Tech., vol. 2, 2005, pp. 904–907.

    Google Scholar 

  19. C.-C. Lin, “Channel decoder design and implementation,” Ph.D. dissertation, National Chiao-Tung University, 2006.

    Google Scholar 

  20. C.-H. Tang, C.-C. Wong, C.-L. Chen, C.-C. Lin et al., “A 952Mb/s Max-Log MAP decoder chip using radix-4 ×4 ACS architecture,” in IEEE Asian Solid-State Circuits Conf., Nov. 2006, pp. 79–82.

    Google Scholar 

  21. C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “A 390Mb/s 3.57mm2 3GPP-LTE turbo decoder ASIC in 0.13μm CMOS,” in IEEE Int. Solid-State Circuit Conf., Feb. 2010, pp. 274–276.

    Google Scholar 

  22. C.-C. Wong, Y.-Y. Lee, and H.-C. Chang, “A 188-size 2.1mm2 reconfigurable turbo decoder chip with parallel architecture for 3GPP LTE system,” in Symp. on VLSI Circuits, Jun. 2009, pp. 288–289.

    Google Scholar 

  23. C.-C. Cheng, Y.-M. Tsai, L.-G. Chen, and A. P. Chanderakasan, “A 0.077 to 0.168 nJ/bit/iteration scalable 3GPP LTE turbo decoder with an adaptive sub-block parallel scheme and an embedded DVFS engine,” in IEEE Custom Integrated Circuits Conf., Sep. 2010.

    Google Scholar 

  24. J.-H. Kim and I.-C. Park, “A unified parallel radix-4 turbo decoder for mobile WiMAX and 3GPP-LTE,” in IEEE Custom Integrated Circuits Conf., Sep. 2009, pp. 487–490.

    Google Scholar 

  25. C.-H. Lin, C.-Y. Chen, E.-J. Chang, and A.-Y. Wu, “A 0.16nJ/bit/iteration 3.38mm2 turbo decoder chip for WiMAX/LTE standards,” in 13th Symp. on Integrated Circuits, Dec. 2011, pp. 168–171.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wong, CC., Chang, HC. (2014). Turbo Decoder with Parallel Processing. In: Turbo Decoder Architecture for Beyond-4G Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8310-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8310-6_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8309-0

  • Online ISBN: 978-1-4614-8310-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics