Skip to main content

An Introduction to Small Molecule Inhibitors and Chronic Myeloid Leukemia

  • Chapter
  • First Online:
Targeted Cancer Treatment in Silico

Abstract

The first part of the book is concerned with the targeted treatment of cancers with small molecule inhibitors. These are inhibitors that have been designed to counter specific cellular defects that are responsible for initiating and maintaining the disease. The best studied example so far is the treatment of chronic myeloild leukemia (CML) with tyrosine kinase inhibitors, such as imatinib, which has led to impressive treatment responses. Yet, drug-resistant tumor cells present an important barrier to successful treatment, especially in the advanced phase of the disease, and can lead to treatment failure. The dynamics of CML and the evolution of drug-resistant mutants will be investigated in detail in this part of the book, through the lens of mathematical models. The current chapter provides the necessary biological background to the mathematical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, J., Yang, P., Gray, N.: Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 9(1), 28–39 (2009)

    Article  Google Scholar 

  2. Druker, B.J.: Imatinib as a paradigm of targeted therapies. Adv. Cancer Res. 91, 1–30 (2004)

    Article  Google Scholar 

  3. Deininger, M.W., Goldman, J.M., Melo, J.V.: The molecular biology of chronic myeloid leukemia. Blood 96(10), 3343–3356 (2000)

    Google Scholar 

  4. An, X., Tiwari, A., Sun, Y., Ding, P., Ashby, C., Chen, Z.: Bcr-abl tyrosine kinase inhibitors in the treatment of philadelphia chromosome positive chronic myeloid leukemia: a review. Leuk. Res. 34(10), 1255–1268 (2010)

    Article  Google Scholar 

  5. Ferdinand, R., Mitchell, S., Batson, S., Tumur, I.: Treatments for chronic myeloid leukemia: a qualitative systematic review. J. Blood Med. 3, 51 (2012)

    Google Scholar 

  6. Deininger, M., Buchdunger, E., Druker, B.: The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105(7), 2640–2653 (2005)

    Article  Google Scholar 

  7. Deininger, M.W., Druker, B.J.: Specific targeted therapy of chronic myelogenous leukemia with imatinib. Pharmacol. Rev. 55(3), 401–423 (2003)

    Article  Google Scholar 

  8. Leitner, A., Hochhaus, A., MĂĽller, M., et al.: Current treatment concepts of cml. Curr. Cancer Drug Targets 11(1), 31 (2011)

    Article  Google Scholar 

  9. Kantarjian, H., Baccarani, M., Jabbour, E., Saglio, G., Cortes, J.: Second-generation tyrosine kinase inhibitors: the future of frontline cml therapy. Clin. Cancer Res. 17(7), 1674–1683 (2011)

    Article  Google Scholar 

  10. Weisberg, E., Manley, P., Cowan-Jacob, S., Hochhaus, A., Griffin, J.: Second generation inhibitors of bcr-abl for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat. Rev. Cancer 7(5), 345–356 (2007)

    Article  Google Scholar 

  11. Karvela, M., Helgason, G., Holyoake, T.: Mechanisms and novel approaches in overriding tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Expert Rev. Anticancer Ther. 12(3), 381–392 (2012)

    Article  Google Scholar 

  12. Paez, J.G., Janne, P.A., Lee, J.C., Tracy, S., Greulich, H., Gabriel, S., Herman, P., Kaye, F.J., Lindeman, N., Boggon, T.J., et al.: Egfr mutations in lung cancer: correlation with clinical response to gefitinib therapy. Sci. Signal. 304(5676), 1497 (2004)

    Google Scholar 

  13. Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., Singh, B., Heelan, R., Rusch, V., Fulton, L., et al.: Egf receptor gene mutations are common in lung cancers from never smokers and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. U S A 101(36), 13306–13311 (2004)

    Article  Google Scholar 

  14. Miyabayashi, K., Ijichi, H., Mohri, D., Tada, M., Yamamoto, K., Asaoka, Y., Ikenoue, T., Tateishi, K., Isayama, H., et al.: Erlotinib prolongs survival in pancreatic cancer by blocking gemcitabine-induced mapk signals. Cancer Res. 73(7), 2221–2234 (2013)

    Article  Google Scholar 

  15. Adams, J., Kauffman, M.: Development of the proteasome inhibitor velcade (bortezomib). Cancer Invest. 22(2), 304–311 (2004)

    Article  Google Scholar 

  16. Escudier, B., Eisen, T., Stadler, W.M., Szczylik, C., Oudard, S., Siebels, M., Negrier, S., Chevreau, C., Solska, E., Desai, A.A., et al.: Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356(2), 125–134 (2007)

    Article  Google Scholar 

  17. Llovet, J.M., Ricci, S., Mazzaferro, V., Hilgard, P., Gane, E., Blanc, J.F., de Oliveira, A.C., Santoro, A., Raoul, J.L., Forner, A., et al.: Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359(4), 378–390 (2008)

    Article  Google Scholar 

  18. Melo, J.V., Hughes, T.P., Apperley, J.F.: Chronic myeloid leukemia. Hematology: Am Soc Hematol Educ Book, 2003(1) pp. 132–52 (2003).

    Google Scholar 

  19. Melo, J.V., Barnes, D.J.: Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat. Rev. Cancer 7(6), 441–453 (2007)

    Article  Google Scholar 

  20. Howlader, N., Noone, A., Krapcho, M., Neyman, N., Aminou, R., Altekreuse, S., Kosary, C., Ruhl, J., Tatalovich, Z., Cho, H., et al.: Seer Cancer Statistics Review, 1975–2009 (Vintage 2009 Populations). National Cancer Institute, Bethesda (2012)

    Google Scholar 

  21. Bolin, R., Robinson, W., Sutherland, J., Hamman, R.: Busulfan versus hydroxyurea in long-term therapy of chronic myelogenous leukemia. Cancer 50(9), 1683–1686 (1982)

    Article  Google Scholar 

  22. Group, C.M.L.T.C.: Interferon alfa versus chemotherapy for chronic myeloid leukemia: a meta-analysis of seven randomized trials. J. Natl. Cancer Inst. 89, 1616–1620 (1997)

    Article  Google Scholar 

  23. Shannon, K.M.: Resistance in the land of molecular cancer therapeutics. Cancer Cell 2(2), 99–102 (2002)

    Article  Google Scholar 

  24. Shah, N.P., Tran, C., Lee, F.Y., Chen, P., Norris, D., Sawyers, C.L.: Overriding imatinib resistance with a novel abl kinase inhibitor. Science 305(5682), 399–401 (2004)

    Article  Google Scholar 

  25. Tauchi, T., Ohyashiki, K.: Molecular mechanisms of resistance of leukemia to imatinib mesylate. Leuk. Res. 28(Suppl 1), S39–45 (2004)

    Article  Google Scholar 

  26. Kantarjian, H., Talpaz, M., Giles, F., O’Brien, S., Cortes, J., et al.: New insights into the pathophysiology of chronic myeloid leukemia and imatinib resistance. Ann. Intern. Med. 145(12), 913 (2006)

    Article  Google Scholar 

  27. Branford, S., Rudzki, Z., Walsh, S., Parkinson, I., Grigg, A., Szer, J., Taylor, K., Herrmann, R., Seymour, J., Arthur, C., et al.: Detection of bcr-abl mutations in patients with cml treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the atp phosphate-binding loop (p-loop) are associated with a poor prognosis. Blood 102(1), 276–283 (2003)

    Article  Google Scholar 

  28. Volpe, G., Panuzzo, C., Ulisciani, S., Cilloni, D., et al.: Imatinib resistance in cml. Cancer Lett. 274(1), 1 (2009)

    Article  Google Scholar 

  29. O’Hare, T., Corbin, A., Druker, B.: Targeted cml therapy: controlling drug resistance, seeking cure. Curr. Opin. Genetics Dev. 16(1), 92–99 (2006)

    Article  Google Scholar 

  30. Giles, F., Cortes, J., Jones, D., Bergstrom, D., Kantarjian, H., Freedman, S.: Mk-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the t315i bcr-abl mutation. Blood 109(2), 500–502 (2007)

    Article  Google Scholar 

  31. Calabretta, B., Perrotti, D.: The biology of cml blast crisis. Blood 103(11), 4010–4022 (2004)

    Article  Google Scholar 

  32. Rodriguez-Brenes, I.A., Komarova, N.L., Wodarz, D.: Evolutionary dynamics of feedback escape and the development of stem-cell-driven cancers. Proc. Natl. Acad. Sci. U S A 108(47), 18983–18988 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia L. Komarova .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Komarova, N.L., Wodarz, D. (2014). An Introduction to Small Molecule Inhibitors and Chronic Myeloid Leukemia. In: Targeted Cancer Treatment in Silico. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-8301-4_2

Download citation

Publish with us

Policies and ethics