Introduction to Oncolytic Viruses

Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

The second part of the book examines the dynamics of oncolytic viruses, i.e., viruses that have been engineered to specifically infect and kill cancer cells. The aim is for the virus to spread throughout the tumor cell population and to thereby drive the tumor into remission. Healthy cells are not productively infected as viral replication is shut down. Therefore, oncolytic viruses enable us to specifically target cancer cells without having to understand the exact cellular defects that initiate and maintain given tumors. While encouraging treatment results have been reported, consistent treatment success remains elusive. Mathematical models can play an important role, together with experimental studies, in our quest to understand the correlates of treatment success. This part of the book will discuss how mathematical models have been helpful in this respect. The current chapter provides biological background that is important for the modeling.

Keywords

Oncolytic viruses Adenovirus Virus dynamics Virus replication Infected cells Target cells Virus transmission Cancer eradication Engineered viruses Ordinary differential equations Basic reproductive ratio 

References

  1. 1.
    Russell, S.J., Peng, K.W., Bell, J.C.: Oncolytic virotherapy. Nat. Biotechnol. 30(7), 658–670 (2012)CrossRefGoogle Scholar
  2. 2.
    Breitbach, C.J., De Silva, N.S., Falls, T.J., Aladl, U., Evgin, L., Paterson, J., Sun, Y.Y., Roy, D.G., Rintoul, J.L., Daneshmand, M., Parato, K., Stanford, M.M., Lichty, B.D., Fenster, A., Kirn, D., Atkins, H., Bell, J.C.: Targeting tumor vasculature with an oncolytic virus. Mol. Ther. 19(5), 886–894 (2011)CrossRefGoogle Scholar
  3. 3.
    Bell, J.C.: Oncolytic viruses: what’s next? Curr. Cancer Drug Targets 7(2), 127–131 (2007)CrossRefGoogle Scholar
  4. 4.
    Bell, J.C., Lichty, B., Stojdl, D.: Getting oncolytic virus therapies off the ground. Cancer Cell 4(1), 7–11 (2003)CrossRefGoogle Scholar
  5. 5.
    Crompton, A.M., Kirn, D.H.: From onyx-015 to armed vaccinia viruses: the education and evolution of oncolytic virus development. Curr. Cancer Drug Targets 7(2), 133–139 (2007)CrossRefGoogle Scholar
  6. 6.
    Davis, J.J., Fang, B.: Oncolytic virotherapy for cancer treatment: challenges and solutions. J. Gene Med. 7(11), 1380–1389 (2005)CrossRefGoogle Scholar
  7. 7.
    Kaplan, J.M.: Adenovirus-based cancer gene therapy. Curr. Gene Ther. 5(6), 595–605 (2005)CrossRefGoogle Scholar
  8. 8.
    Kelly, E., Russell, S.J.: History of oncolytic viruses: genesis to genetic engineering. Mol. Ther. 15(4), 651–659 (2007)Google Scholar
  9. 9.
    Kirn, D., Hermiston, T., McCormick, F.: ONYX-015: clinical data are encouraging. Nat. Med. 4(12), 1341–1342 (1998)CrossRefGoogle Scholar
  10. 10.
    O’Shea, C.C.: Viruses—seeking and destroying the tumor program. Oncogene 24(52), 7640–7655 (2005)CrossRefGoogle Scholar
  11. 11.
    Parato, K.A., Senger, D., Forsyth, P.A., Bell, J.C.: Recent progress in the battle between oncolytic viruses and tumours. Nat. Rev. Cancer 5(12), 965–976 (2005)CrossRefGoogle Scholar
  12. 12.
    Post, D.E., Shim, H., Toussaint-Smith, E., Van Meir, E.G.: Cancer scene investigation: how a cold virus became a tumor killer. Future Oncol. 1(2), 247–258 (2005)CrossRefGoogle Scholar
  13. 13.
    Roberts, M.S., Lorence, R.M., Groene, W.S., Bamat, M.K.: Naturally oncolytic viruses. Curr. Opin. Mol. Ther. 8(4), 314–321 (2006)Google Scholar
  14. 14.
    Wong, H.H., Lemoine, N.R., Wang, Y.: Oncolytic viruses for cancer therapy: overcoming the obstacles. Viruses 2, 78–106 (2010)CrossRefGoogle Scholar
  15. 15.
    Vaha-Koskela, M.J., Heikkila, J.E., Hinkkanen, A.E.: Oncolytic viruses in cancer therapy. Cancer Lett. 254, 178–216 (2007)CrossRefGoogle Scholar
  16. 16.
    McCormick, F.: Cancer-specific viruses and the development of ONYX-015. Cancer Biol. Ther. 2(4 Suppl 1), S157–S160 (2003)Google Scholar
  17. 17.
    McCormick, F.: Future prospects for oncolytic therapy. Oncogene 24(52), 7817–7819 (2005)CrossRefGoogle Scholar
  18. 18.
    Kirn, D.H., McCormick, F.: Replicating viruses as selective cancer therapeutics. Mol. Med. Today 2(12), 519–527 (1996)CrossRefGoogle Scholar
  19. 19.
    Waage, J.K., Hassell, M.P.: Parasitoids as biological-control agents—a fundamental approach. Parasitology 84(Apr), 241–268 (1982)Google Scholar
  20. 20.
    Martuza, R.L., Malick, A., Markert, J.M., Ruffner, K.L., Coen, D.M.: Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252(5007), 854–856 (1991)CrossRefGoogle Scholar
  21. 21.
    Garber, K.: China approves world’s first oncolytic virus therapy for cancer treatment. J. Natl. Cancer Inst. 98(5), 298–300 (2006)CrossRefGoogle Scholar
  22. 22.
    Jiang, H., Gomez-Manzano, C., Lang, F.F., Alemany, R., Fueyo, J.: Oncolytic adenovirus: preclinical and clinical studies in patients with human malignant gliomas. Curr. Gene Ther. 9(5), 422–427 (2009)CrossRefGoogle Scholar
  23. 23.
    Eager, R.M., Nemunaitis, J.: Clinical development directions in oncolytic viral therapy. Cancer Gene Ther. 18(5), 305–317 (2011)CrossRefGoogle Scholar
  24. 24.
    Wodarz, D.: Viruses as antitumor weapons: defining conditions for tumor remission. Cancer Res. 61(8), 3501–3507 (2001)Google Scholar
  25. 25.
    Wodarz, D.: Gene therapy for killing p53-negative cancer cells: use of replicating versus nonreplicating agents. Hum. Gene Ther. 14(2), 153–159 (2003)CrossRefGoogle Scholar
  26. 26.
    Bajzer, Z., Carr, T., Josic, K., Russell, S.J., Dingli, D.: Modeling of cancer virotherapy with recombinant measles viruses. J. Theor. Biol. 252(1), 109–122 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Biesecker, M., Kimn, J.H., Lu, H., Dingli, D., Bajzer, Z.: Optimization of virotherapy for cancer. Bull. Math. Biol. 72(2), 469–489 (2010)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Dingli, D., Cascino, M.D., Josic, K., Russell, S.J., Bajzer, Z.: Mathematical modeling of cancer radiovirotherapy. Math. Biosci. 199(1), 55–78 (2006)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Dingli, D., Offord, C., Myers, R., Peng, K.W., Carr, T.W., Josic, K., Russell, S.J., Bajzer, Z.: Dynamics of multiple myeloma tumor therapy with a recombinant measles virus. Cancer Gene Ther. 16(12), 873–882 (2009)CrossRefGoogle Scholar
  30. 30.
    Friedman, A., Tian, J.P., Fulci, G., Chiocca, E.A., Wang, J.: Glioma virotherapy: effects of innate immune suppression and increased viral replication capacity. Cancer Res. 66(4), 2314–2319 (2006)CrossRefGoogle Scholar
  31. 31.
    Karev, G.P., Novozhilov, A.S., Koonin, E.V.: Mathematical modeling of tumor therapy with oncolytic viruses: effects of parametric heterogeneity on cell dynamics. Biol. Direct 1, 30 (2006)CrossRefGoogle Scholar
  32. 32.
    Komarova, N.L., Wodarz, D.: Ode models for oncolytic virus dynamics. J. Theor. Biol. 263(4), 530–543 (2010)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Novozhilov, A.S., Berezovskaya, F.S., Koonin, E.V., Karev, G.P.: Mathematical modeling of tumor therapy with oncolytic viruses: regimes with complete tumor elimination within the framework of deterministic models. Biol. Direct 1, 6 (2006)CrossRefGoogle Scholar
  34. 34.
    Wein, L.M., Wu, J.T., Kirn, D.H.: Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: implications for virus design and delivery. Cancer Res. 63(6), 1317–1324 (2003)Google Scholar
  35. 35.
    Wodarz, D.: Computational approaches to study oncolytic virus therapy: insights and challenges. Gene Ther. Mol. Biol. 8, 137–146 (2004)Google Scholar
  36. 36.
    Wodarz, D.: Use of oncolytic viruses for the eradication of drug-resistant cancer cells. J. R. Soc. Interface 6(31), 179–186 (2009)CrossRefGoogle Scholar
  37. 37.
    Wodarz, D., Komarova, N.: Towards predictive computational models of oncolytic virus therapy: basis for experimental validation and model selection. PLoS ONE 4(1), e4271 (2009)CrossRefGoogle Scholar
  38. 38.
    Zurakowski, R., Messina, M.J., Tuna, S.E., Teel, R.A.: HIV treatment scheduling via robust nonlinear model predictive control. 5th Asian Control Conference 2004 (2004)Google Scholar
  39. 39.
    Mok, W., Stylianopoulos, T., Boucher, Y., Jain, R.K.: Mathematical modeling of herpes simplex virus distribution in solid tumors: implications for cancer gene therapy. Clin. Cancer Res. 15(7), 2352–2360 (2009)CrossRefGoogle Scholar
  40. 40.
    Paiva, L.R., Binny, C., Ferreira Jr., S.C., Martins, M.L.: A multiscale mathematical model for oncolytic virotherapy. Cancer Res. 69(3), 1205–1211 (2009)Google Scholar
  41. 41.
    Reis, C.L., Pacheco, J.M., Ennis, M.K., Dingli, D.: In silico evolutionary dynamics of tumour virotherapy. Integr. Biol. (Camb.) 2(1), 41–45 (2010)CrossRefGoogle Scholar
  42. 42.
    Nowak, M.A., May, R.M.: Virus Dynamics. Mathematical Principles of Immunology and Virology. Oxford University Press, Oxford (2000)MATHGoogle Scholar
  43. 43.
    Perelson, A.S.: Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2(1), 28–36 (2002)CrossRefGoogle Scholar
  44. 44.
    Wodarz, D.: Killer Cell Dynamics: Mathematical and Computational Approaches to Immunology. Springer, New York (2006)Google Scholar
  45. 45.
    Anderson, R.M., May, R.M.: Infectious Diseases of Humans. Oxford University Press, Oxford (1991)Google Scholar
  46. 46.
    De Boer, R.J., Oprea, M., Antia, R., Murali-Krishna, K., Ahmed, R., Perelson, A.S.: Recruitment times, proliferation, and apoptosis rates during the CD8(+) T-cell response to lymphocytic choriomeningitis virus. J. Virol. 75(22), 10663–10669 (2001)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaIrvineUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineUSA

Personalised recommendations