Multimodal Dialogue System for Interaction in AmI Environment by Means of File-Based Services

  • Nieves Ábalos
  • Gonzalo Espejo
  • Ramón López-Cózar
  • Francisco J. Ballesteros
  • Enrique Soriano
  • Gorka Guardiola
Conference paper


This paper presents our ongoing work on the development of a multimodal dialogue system to enable user control of home appliances in an ambient intelligence environment. The physical interaction with the appliances is carried out by means of Octopus, a system developed in a previous study to ease communication with hardware devices by abstracting them as network files. To operate the appliances and get information about their state, the dialogue system writes and reads files using WebDAV. This architecture presents an important advantage since the appliances are considered as abstract objects, which notably simplifies dialogue system’s interaction with them.



This research has been funded by the Spanish project ASIES TIN2010-17344.


  1. 1.
    Abalos, N., Espejo, G., Lopez-Cozar, R., Callejas, Z., Griol, D.: A multimodal dialogue system for an ambient intelligent application in home environments. In: Lecture Notes in Artificial Intelligence, vol. 6231/2010, pp. 491–498. Springer, Berlin (2010)Google Scholar
  2. 2.
    Allerding, F., Schmeck, H.: Organic smart home: architecture for energy management in intelligent buildings. Workshop Organic Computing as Part of ICAC, Karlsruhe, Germany (2011)Google Scholar
  3. 3.
    Augusto J.C.: Ambient intelligence: the confluence of pervasive computing and artificial intelligence. In: Schuster, A. (ed.) Intelligent Computing Everywhere, pp. 213–234. Springer, Berlin (2007)CrossRefGoogle Scholar
  4. 4.
    Augusto, J.C., O’Donoghue, J.: Context-aware agents (the 6 ws architecture). In: Proceedings of the International Conference on Agents and Artificial Intelligence (ICAART). INSTICC, Porto, Portugal (2009)Google Scholar
  5. 5.
    Ballesteros, F.J., Soriano, E., Guardiola, G., Leal, K.: Traditional systems can work well for pervasive applications. a case study: plan 9 from bell labs becomes ubiquitous. In: Proceedings of the 3rd IEEE International Conference on Pervasive Computing and Communications, pp. 295–299 (2005)Google Scholar
  6. 6.
    Ballesteros, F.J., Soriano, E., Leal, K., Guardiola, G.: Plan B: using files instead of middleware abstractions for pervasive computing environments. IEEE Pervasive Comput. 6(3), 58–65 (2007)CrossRefGoogle Scholar
  7. 7.
    Ballesteros, F.J., Soriano, E., Guardiola, G.: Upperware: bringing resources back to the system. In: IEEE Middleware Support for Pervasive Computing Workshop 2010, in Proceedings of the PerCom 2010 Workshops (2010)Google Scholar
  8. 8.
    Ballesteros, F.J., Soriano, E., Guardiola, G.: Octopus: an upperware based system for building personal pervasive environments. J. Syst. Software 85(7), 1637–1649 (2012)CrossRefGoogle Scholar
  9. 9.
    Ballesteros, F.J., Guardiola, G., Soriano, E.: Personal pervasive environments: practice and experience. Sensors 12(6), 7109–7125 (2012)CrossRefGoogle Scholar
  10. 10.
    Barger, T., Brown, D., Alwan, M.: Health status monitoring through analysis of behavioral patterns. IEEE Trans. Syst. Man, and Cybernetics, Part A 35, 22–27 (2005)Google Scholar
  11. 11.
    Costantini, S., Mostarda, L., Tocchio, A., Tsintza, P.: Dalica: agent-based ambient intelligence for cultural-heritage scenarios. IEEE Intell. Syst. 23(2), 34–41 (2008)CrossRefGoogle Scholar
  12. 12.
    Corchado, J.M., Pavón, J., Corchado, E., Castillo, L.F.: Development of CBR-BDI agents: a tourist guide application. Lecture Notes in Artificial Intelligence, vol. 3155, pp. 547–559. Springer, New York (2004)Google Scholar
  13. 13.
    Cook, D., Youngblood, M., Das, K..: A multi-agent approach to controlling a smart environment. Designing Smart Homes. The Role of Artificial Intelligence, pp. 165–182. Springer, Berlin (2006)Google Scholar
  14. 14.
    Cook, D., Augusto, J.C., Jakkula, V.: Ambient intelligence: Technologies, applications, and opportunities. J. Pervasive Mobile Comput. 5(4), 277–298 (2009)CrossRefGoogle Scholar
  15. 15.
    Gómez, J., Montoro, G., Haya, P.A., García-Herranz, M., Alamán, X.: Distributed schema-based middleware for ambient intelligence environments. In: Ubiquitous Developments in Ambient Computing and Intelligence: Human-Centered Applications, pp. 205–218. IGI Global, Pennsylvania (2011)Google Scholar
  16. 16.
    Hagras, H., Callaghan, V., Colley, M., Clarke, G., Pounds-Cornish, A., Duman, H.: Creating an ambientintelligence environment using embedded agents. IEEE Intell. Syst. 19(6), 12–20 (2004)CrossRefGoogle Scholar
  17. 17.
    Helal, A., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The Gator tech smarthouse: a programmable pervasive space. IEEE Comput. 38, 50–60 (2005)CrossRefGoogle Scholar
  18. 18.
    Heinroth, T., Schmitt, T., Bertrand, G.: Enhancing speech dialogue technologies for ambient intelligent environments. In: 5th International Conference on Intelligent Environments (IE09). Ambient Intelligence and Smart Environments, vol. 2, pp. 42–49. IOS Press, Barcelona (2009)Google Scholar
  19. 19.
    Heinroth, T., Denich, D., Schmitt, A., Minker, W.: Efficient spoken dialogue domain representation and interpretation. In: Language Resources and Evaluation Conference 2010 is Organised by ELRA, Valletta, Malta (2010)Google Scholar
  20. 20.
    Keegan, S., O’Hare, G.M.P., O’Grady, M.J.: Easishop: Ambient intelligence assists everyday shopping. Inform. Sci. 178(3), 588–611 (2008)CrossRefGoogle Scholar
  21. 21.
    Lalis, S., Savidis, A., Karypidi, A., Gutknecht, J., Stephanides, C.: Towards dynamic and cooperative multi-device personal computing. In: The Disappearing Computer. Lecture Notes in Computer Science, vol. 4500. Springer, Berlin (2007)Google Scholar
  22. 22.
    Pike, R., Ritchie, D.M.: The styx architecture for distributed systems. Bell Syst. Tech. J. 4(2), 146–152 (1999)CrossRefGoogle Scholar
  23. 23.
    Richard, N., Yamada, S.: Context-awareness and user feedback for an adaptive reminding system. In: Augusto, J.C., Shapiro, D. (eds.) Proceedings of the 2nd Workshop on Artificial Intelligence Techniques for Ambient Intelligence (AITAmI’07), Hyderabad, India, pp. 57–61 (2007)Google Scholar
  24. 24.
    Sun’s Java Remote Method Invocation Home:
  25. 25.
    W3C SOAP specifications:
  26. 26.
    Wakkary, R., Evernden, D.: Museum as ecology: a case study analysis of an ambient intelligent museum guide. In: Trant, J., Bearman, D. (eds.) Museums and the Web 2005: Proceedings. Archives and Museum Informatics, Toronto, 31 Mar 2005Google Scholar
  27. 27.
    Xu, B., Ge, Y., Chen, J., Chen, Z., Ling, Y.: Elderly personal safety monitoring in smart home based on host space and travelling pattern identification. Inform. Tech. J. 11(8), 1063–1069 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nieves Ábalos
    • 1
  • Gonzalo Espejo
    • 1
  • Ramón López-Cózar
    • 1
  • Francisco J. Ballesteros
    • 2
  • Enrique Soriano
    • 2
  • Gorka Guardiola
    • 2
  1. 1.Department of LSI, CITIC-UGRUniversity of GranadaGranadaSpain
  2. 2.Laboratorio de Sistemas Universidad Rey Juan CarlosMadridSpain

Personalised recommendations