Basic Concepts on On-Chip Networks



As the number of cores integrated into a System-on-Chip increases, the role played by the communication system becomes more and more important. The Network-on-Chip design paradigm is today recognised as the most viable communication infrastructure to deal with the scalability issues which characterise the ultra-deep sub-micron silicon era. In this chapter, some of the most important concepts in the context of on-chip networks will be reviewed. Basic concepts including, network topologies, switching techniques, and routing algorithms will be recalled. Such topics represent the conceptual bases exploited by the strategies, the mechanisms, and the methodologies discussed in the subsequent chapters.


Output Port Clock Frequency Input Port Virtual Channel Communication Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. Ascia, V. Catania, M. Palesi, D. Patti, Implementation and analysis of a new selection strategy for adaptive routing in networks-on-chip. IEEE Trans. Comput. 57(6), 809–820 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    L. Benini, G.D. Micheli, Networks on chips: a new SoC paradigm. IEEE Comput. 35(1), 70–78 (2002)CrossRefGoogle Scholar
  3. 3.
    D.P. Bertsekas, R.G. Gallager, Data Networks (Prentice Hall, Englewood Cliffs, 1992)MATHGoogle Scholar
  4. 4.
    C.-H. Chao, K.-Y. Jheng, H.-Y. Wang, J.-C. Wu, A.-Y. Wu, Traffic- and thermal-aware run-time thermal management scheme for 3D NoC systems, in ACM/IEEE International Symposium on Networks-on-Chip, Grenoble, 2010, pp. 223–230Google Scholar
  5. 5.
    A.A. Chien, J.H. Kim, Planar-adaptive routing: low-cost adaptive networks for multiprocessors. J. ACM 42(1), 91–123 (1995)CrossRefMATHGoogle Scholar
  6. 6.
    G.-M. Chiu, The odd-even turn model for adaptive routing. IEEE Trans. Parallel Distrib. Syst. 11(7), 729–738 (2000)CrossRefGoogle Scholar
  7. 7.
    W.J. Dally, C. Seitz, Deadlock-free message routing in multiprocessor interconnection networks. IEEE Trans. Comput. C(36), 547–553 (1987)Google Scholar
  8. 8.
    W.J. Dally, B. Towles, Route packets, not wires: on-chip interconnection networks, in ACM/IEEE Design Automation Conference, Las Vegas, 2001, pp. 684–689Google Scholar
  9. 9.
    W.J. Dally, B. Towles, Principles and Practices of Interconnection Networks (Morgan Kaufmann, San Francisco, 2004)Google Scholar
  10. 10.
    M. Daneshtalab, M. Ebrahimi, T.C. Xu, P. Liljeberg, H. Tenhunen, A generic adaptive path-based routing method for MPSoCs. Elsevier J. Syst. Archit. 57(1), 109–120 (2011)CrossRefGoogle Scholar
  11. 11.
    M.M. de Azevedo, D. Blough, Fault-tolerant clock synchronization of large multicomputers via multistep interactive convergence, in International Conference on Distributed Computing Systems, Hong Kong, 1996, pp. 249–257Google Scholar
  12. 12.
    J. Duato, A new theory of deadlock-free adaptive routing in wormhole networks. IEEE Trans. Parallel Distrib. Syst. 4(12), 1320–1331 (1993)CrossRefGoogle Scholar
  13. 13.
    J. Duato, A necessary and sufficient condition for deadlock-free routing in wormhole networks. IEEE Trans. Parallel Distrib. Syst. 6(10), 1055–1067 (1995)CrossRefGoogle Scholar
  14. 14.
    J. Duato, S. Yalamanchili, L. Ni, Interconnection Networks: An Engineering Approach (Morgan Kaufmann, San Francisco, 2002)Google Scholar
  15. 15.
    M. Ebrahimi, M. Daneshtalab, F. Fahimeh, P. Liljeberg, J. Plosila, M. Palesi, H. Tenhunen, HARAQ: congestion-aware learning model for highly adaptive routing algorithm in on-chip networks, in ACM/IEEE International Symposium on Networks-on-Chip, Copenhagen, May 2012, pp. 19–26Google Scholar
  16. 16.
    M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, J. Flich, H. Tenhunen, Path-based partitioning methods for 3d networks-on-chip with minimal adaptive routing. IEEE Trans. Comput. 99, pp. 1, doi: 10.1109/TC.2012.255Google Scholar
  17. 17.
    M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, H. Tenhunen, Cluster-based topologies for 3D networks-on-chip using advanced inter-layer bus architecture. Elsevier J. Comput. Syst. Sci. 79(4), 475–491 (2013)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    C.J. Glass, L.M. Ni, The turn model for adaptive routing. J. Assoc. Comput. Mach. 41(5), 874–902 (1994)CrossRefGoogle Scholar
  19. 19.
    J. Hu, R. Marculescu, DyAD – smart routing for networks-on-chip, in ACM/IEEE Design Automation Conference, San Diego, 7–11 June 2004, pp. 260–263Google Scholar
  20. 20.
    ITRS 2011 edition, International Technology Roadmap for Semiconductors (2011).
  21. 21.
    A. Jantsch, H. Tenhunen (eds.), Networks on Chip, chapter  1 (Kluwer Academic, Boston, 2003)
  22. 22.
    S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja, A. Hemani, A network on chip architecture and design methodology, in IEEE Computer Society Annual Symposium on VLSI, Pittsburg, p. 117, 2002Google Scholar
  23. 23.
    K. Li, R. Schaefer, A hypercube shared virtual memory, in International Conference on Parallel Processing, University Park, 1989, pp. 125–132Google Scholar
  24. 24.
    X. Lin, L.M. Ni, Multicast communication in multicomputer networks. IEEE Trans. Parallel Distrib. Syst. 4, 1105–1117 (1993)CrossRefGoogle Scholar
  25. 25.
    P.K. McKinley, H. Xu, E.T. Kalns, L.M. Ni, CompaSS: efficient communication services for scalable architectures, in International Conference on Supercomputing, Washington, D.C., 1992, pp. 478–487Google Scholar
  26. 26.
    G.D. Micheli, L. Benini, Powering networks on chips: energy-efficient and reliable interconnect design for SoCs, in International IEEE Symposium on Systems Synthesis, Montréal, 2001, pp. 33–38Google Scholar
  27. 27.
    P. Mohapatra, Wormhole routing techniques for directly connected multicomputer systems. ACM Comput. Surv. 30(8), 374–410 (1998)CrossRefGoogle Scholar
  28. 28.
    L.M. Ni, P.K. McKinley, A survey of wormhole routing techniques in direct networks. IEEE Comput. 26, 62–76 (1993)CrossRefGoogle Scholar
  29. 29.
    E. Nilsson, M. Millberg, J. Oberg, A. Jantsch, Load distribution with the proximity congestion awareness in a network on chip, in Design, Automation and Test in Europe, Washington, D.C., 2003, pp. 1126–1127Google Scholar
  30. 30.
    M. Palesi, R. Holsmark, S. Kumar, V. Catania, Application specific routing algorithms for networks on chip. IEEE Trans. Parallel Distrib. Syst. 20(3), 316–330 (2009)CrossRefGoogle Scholar
  31. 31.
    D. Park, S. Eachempati, R. Das, A. Mishra, Y. Xie, N. Vijaykrishnan, C.R. Das, MIRA: a multi-layered on-chip interconnect router architecture, in International Symposium on Computer Architecture, Beijing, 2008, pp. 251–261Google Scholar
  32. 32.
    J. Upadhyay, V. Varavithya, P. Mohapatra, A traffic-balanced adaptive wormhole routing scheme for two-dimensional meshes. IEEE Trans. Comput. 46(2), 190–197 (1997)CrossRefGoogle Scholar
  33. 33.
    H. Xu, P.K. McKinley, E.T. Kalns, L.M. Ni, Efficient implementation of barrier synchronization in wormhole-routed hypercube multicomputers. J. Parallel Distrib. Comput. 16, 172–184 (1992)CrossRefGoogle Scholar
  34. 34.
    T.T. Ye, L. Benini, G.D. Micheli, Packetization and routing analysis of on-chip multiprocessor networks. J. Syst. Archit. 50(2–3), 81–104 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.University of TurkuTurkuFinland
  2. 2.Kore UniversityEnnaItaly

Personalised recommendations