Phytopathogenic Fungi and Fungal-Like Microbes in Svalbard

  • Motoaki TojoEmail author
  • Shota Masumoto
  • Tamotsu Hoshino
Conference paper


Phytopathogenic fungi and fungal-like microbes occur frequently on moss and vascular plant species in polar regions. Characterization of the pathogens is important because they can affect individual growth and community structure in many wild plants. This review documents taxonomical and ecological features of phytopathogenic fungi and fungal-like microbes in Svalbard, a high Arctic archipelago. Among the 565 species of listed fungi and fungal-like microbes in Svalbard, at least 176 species have been found to be pathogens or potential pathogens of plants. Recent studies reviewed here indicate that several plant pathogens in Svalbard show adaptation to cold environments and have a potential impact on plant populations in the high Arctic region.


Internal Transcribe Spacer Polar Region Phytopathogenic Fungus Smut Fungus Pythium Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bridge PD, Newsham KK, Denton GJ (2008) Snow mould caused by a Pythium sp.: a potential vascular plant pathogen in the maritime Antarctic. Plant Pathol 57:1066–1072CrossRefGoogle Scholar
  2. Carpenter SE (1981) Monograph of Crocicreas (Ascomycetes, Helotiales, Leotiaceae). New York Botanical Garden, New York, pp 33:1–290Google Scholar
  3. Davey MC (1997) Effects of continuous and repeated dehydration on carbon fixation by bryophytes from the maritime Antarctic. Oecologia 110:25–31CrossRefGoogle Scholar
  4. Döbbeler P (1978) Moosbewohnende Ascomyceten I. Die Pyrenocarpen, den Gametophyten besiedelen Arten, vol 14. Botanische Staatssammlung, München, pp 1–360Google Scholar
  5. Döbbeler P (1996) Potriphila navicularis gen. et sp. nov. (Ostropales, Ascomycetes), ein bipolar verbreiteter Parasit von Polytrichum alpinum. Nova Hedw 62:61–77Google Scholar
  6. Elvebakk A, Gjærum HB, Sivertsen S (1996) Part 4. Fungi II. Myxomycota, Oomycota, Chytridiomycota, Zygomycota, Ascomycota, Deutromycota, Basidiomycota: Uredinales and Ustilaginales. In: Elvebakk A, Prestrud P (eds) A catalogue of Svalbard plants, fungi, algae and cyanobacteria. Norsk Polarinstitutt, Oslo, pp 207–259Google Scholar
  7. Eriksson OE (1967) On graminicolous pyrenomycetes from Fennoscandia. 1. Dictyosporous species. Ark Bot 2:339–379Google Scholar
  8. Fleming KM, Dowdeswell JA, Oerlemans J (1997) Modelling the mass balance of northwest Spitsbergen glaciers and responses to climate change. Ann Glaciol 24:203–210Google Scholar
  9. Goldfarb B, Nelson EE, Hansen EM (1989) Trichoderma spp.: growth rates and antagonism to Phellinus weirii in vitro. Mycologia 81:375–381CrossRefGoogle Scholar
  10. Gilbert GS (2002) Evolutionary ecology of plant disease in natural ecosystems. Annu Rev Phytopathol 40:13–43PubMedCrossRefGoogle Scholar
  11. Gjærum H (1991) Rust- og sotsopper på Svalbard. Blyttia 49:167–169Google Scholar
  12. Hagen A (1941) Micromycetes from Vestspitsbergen collected by dr. Emil Hadač in 1939 vol 49. Dybwad i Komm, Norway, pp 1–11Google Scholar
  13. Hagen A (1950) Notes on arctic fungi. Norsk Polarinst Srk 93:1–25Google Scholar
  14. Hagen A (1952) Plants collected in Vestspitsbergen in the summer of 1933. Norsk Polarinstitutt Medd 70:1–14Google Scholar
  15. Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Nat Acad Sci USA 103:14288–14293PubMedCrossRefGoogle Scholar
  16. Holm K, Holm L (1993a) Dryadicolous ascomycetes from Svalbard. In: Petrini O, Laursen GA (eds) Arctic and alpine mycology 3–4. Bibl Mycol 150:53–62Google Scholar
  17. Holm L (1957) Études taxonomiques sur les pléosporacées. Symb Bot upsal 14:1–188Google Scholar
  18. Holm L (1975) Taxonomic notes on ascomycetes. VII. Microfungi on Cassiope tetragona. Svensk Bot Tidskr 69:143–160Google Scholar
  19. Holm L (1979) Microfungi on Dryas. Bot Not 132:77–92Google Scholar
  20. Holm L, Holm K (1980) Microfungi on Cassiope (Harrimanella) hypnoides. Norweg J Bot 27:179–184Google Scholar
  21. Holm L, Holm K (1993b) The genus Pleospora s. l. from Svalbard. Sydowia 45:167–187Google Scholar
  22. Holm L, Holm K (1993c) Two new northern pyrenomycetes. Blyttia 51:121–123Google Scholar
  23. Holm L, Holm K (1994) Svalbard Pyrenomycetes. An annotated checklist. Karstenia 34:65–78Google Scholar
  24. Hoshino T, Tojo M, Kanda H, Tronsmo AM (2001) Ecological role of fungal infections of moss carpet in Svalbard. Mem Nat Inst Polar Res 54:507–513Google Scholar
  25. Hoshino T, Saito I, Tronsmo AM (2003) Two snow mold fungi from Svalbard. Lidia 6:30–32Google Scholar
  26. Huhtinen S (1987) New Svalbard Fungi. In: Laursen GA, Ammirati JF (eds) Arctic and Alpine Mycology II (= Proceedings ISAM 2). Plenum, New York, pp 123–151Google Scholar
  27. Huhtinen S (1993) Some hyaloscyphaceous fungi from tundra and taiga. Sydowia 45:188–198Google Scholar
  28. Jørstad I (1950) Puccinia blyttiana, a new member of the East Arctic rust flora. Blyttia 8:81–90Google Scholar
  29. Karsten P (1872) Fungi in insulis Spitsbergen et Beeren Eiland collecti. Examinat, enumerate. Öfvers K Vet-Akd Förth 2:91–108Google Scholar
  30. Karsten P (1884) Fragmenta mycological VI. Hedwigia 23:37–39Google Scholar
  31. Kukkonen I (1963) Taxonomic studies on the genus Anthracoidea (Ustilaginales). Ann Bot Soc Zool Bot Fenn Vanamo 34:1–122Google Scholar
  32. Lid J (1967) Synedria of twenty vascular plants from Svalbard. Bot Jahrb 86:481–493Google Scholar
  33. Lind J (1928) The Micromycetes of Svalbard. Skr Svalbard Ishavet 13:1–61Google Scholar
  34. Lind J (1934) Studies on the geographical distribution of arctic circumpolar micromycetes. K Danske Vid Selsk Biol Medd 11:1–152Google Scholar
  35. Lindeberg B (1959) Ustilaginales of Sweden. Symb Bot Upsal 14:1–175Google Scholar
  36. Lu B, Druzhinina I, Fallah P, Chaverri P, Gradinger C, Kubicek CP, Samuels GJ (2004) Hypocrea/Trichoderma species with pachybasium-like conidiophores: teleomorphs for T. minutisporum and T. polysporum, and their newly discovered relatives. Mycologia 96:310–342PubMedCrossRefGoogle Scholar
  37. Nannfeldt JA (1932) Studien über die Morphologie und Systematik der nicht lichenisierten, inoperculaten Discomyceten.—Nova Acta Reg Soc Sei Upsaliensis. Ser 4(8):1–376Google Scholar
  38. Nannfeldt JA (1933) Puccinia eutremae Lindr. Found in Spitsbergen. Svensk Bot Tidskr 27:116–117Google Scholar
  39. Nannfeldt JA (1984a) Hysteronaevia, a new genus of mollisioid Discomycetes. Nord J Bot 4:225–247CrossRefGoogle Scholar
  40. Nannfeldt JA (1984b) Notes on Diplonaevia (Discomycetes inoperculati), with special regard to the species on Juncaceae. Nord J Bot 4:791–815CrossRefGoogle Scholar
  41. Schumacher T, Kohn LM (1985) A monographic revision of the genus Myriosclerotinia. Can J Bot 63:1610–1640CrossRefGoogle Scholar
  42. Singh SM, Singh SK, Yadav LS, Ravindra R (2012) Filamentous soil fungi from Ny-Ålesund, Spitsbergen, and screening for extracellular enzymes. Arctic 65:45–55Google Scholar
  43. Smith RIL (1996) Terrestrial and freshwater biotic components of the western Antarctic Peninsula. In: Ross RM, Hofmann EE, Quentin LB (eds) Foundations of Ecological Research West of the Antarctic Peninsula Antarctic Research Series vol 70. American Geophysical Union, Washington DC, pp 15–59Google Scholar
  44. Tojo M, Newsham KK (2012) Snow moulds in polar environments. Fungal Ecol 5:395–402CrossRefGoogle Scholar
  45. Tojo M, Nishitani S (2005) The effects of the smut fungus Microbotryum bistortarum on survival and growth of Polygonum viviparum in Svalbard, Norway. Can J Bot 83:1513–1517CrossRefGoogle Scholar
  46. Tojo M, Van West P, Hoshino T, Kida K, Fujii H, Hakoda H, Kawaguchi Y, Mühlhauser HA, Van den Berg AH, Küpper FC, Herrero ML, Klemsdal SS, Tronsmo AM, Kanda H (2012) Pythium polare, a new heterothallic Oomycete causing brown discoloration of Sanionia uncinata in the Arctic and Antarctic. Fungal Biol 116:756–768PubMedCrossRefGoogle Scholar
  47. Turner J, Bindschadler R, Convey P, di Prisco G, Fahrbach E, Gutt J, Hodgson D, Mayewski P, Summerhayes C (2009) Antarctic climate change and the environment. Scientific Committee on Antarctic Research, Scott Polar Research Institute, Cambridge, UK.Google Scholar
  48. Van der Plaats-Niterink AJ (1981) Stud Mycol 21:1–242Google Scholar
  49. Vánky K (1994) European smut fungi. Gustav Fischer Verlag, StuttgartGoogle Scholar
  50. Vánky K, Oberwinkler F (1994) Ustilaginales on Polygonaceae, a taxonomic revision. Nova Hedwigia 107:1–96Google Scholar
  51. Väre H, Vestberg M, Eurola S (1992) Mycorrhiza and root-associated fungi in Spitsbergen. Mykorrhiza 1:93–104CrossRefGoogle Scholar
  52. Victoria FC, Pereira AB, Costa DP (2009) Composition and distribution of moss formations in the ice-free areas adjoining the Arctowski region, Admiralty Bay, King George Island, Antarctica. Iheringia, Série Botânica 64:81–91Google Scholar
  53. Virtanen RJ, Lundberg PA, Moen J, Oksanen L (1997) Topographic and altitudinal patterns in plant communities on European Arctic islands. Polar Biol 17:95–113CrossRefGoogle Scholar
  54. Wulff T (1902) Botanische Beobachtungen aus Spitzbergen. Kessinger, MontanaGoogle Scholar
  55. Yamazaki Y, Tojo M, Hoshino T, Kida K, Sakamoto T, Ihara H, Yumoto I, Tronsmo AM, Kanda H (2011) Characterization of Trichoderma polysporum from Spitsbergen, Svalbard archipelago, Norway, on species identity, infectivity to moss, and polygalacturonase activity. Fungal Ecol 4:15–21CrossRefGoogle Scholar
  56. Zabawski J (1982) Soil microfungi of peats in the Hornsund region (West Spitsbergen). Acta Universitatis Wratislaviensis 525:269–279Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
  2. 2.The Graduate University for Advanced Studies (SOKENDAI)TachikawaJapan
  3. 3.National Institute of Advanced Industrial Science and Technology (AIST)Higashi-HiroshimaJapan

Personalised recommendations