Skip to main content

The Role of Pharmacokinetics and Allometrics in Imaging: Practical Issues and Considerations

  • Chapter
  • First Online:
Pharmaco-Imaging in Drug and Biologics Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 8))

  • 1189 Accesses

Abstract

“Disease” can be best defined as a complex array of biological activities which are all relational to the underlying changes in the normal physiology of the species. The study of disease from infections to tumors, from mice through various species, is fraught with significant differences in tissue and organ blood flow, organ sizes, physiologic functional differences, metabolic biomarkers, structural uniqueness (“lock and key” receptor specificity), varied and unique immunologic responses, and indeed all of these partake in some manner in the control and definition of each species. The goal of imaging is to provide either some key biomarker or metabolite that provides translational time–activity responses or anatomical distinctions over time that reflect the natural history (NHx) of a disease or ways to describe the biologic changes that are in question as a result of pathology. Allometric analysis thus may be necessary in the selection of dosing where target saturation may be important, species show variation in target affinities, imaging is time dependent and physiologic “clocks” vary, and many other considerations. This chapter attempts to describe such situations as well as currently used approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    IV, IM, SC, IP, PO, etc. refer to intravenous, intramuscular, subcutaneous, intraperitoneal, orally, etc., respectively.

  2. 2.

    Specific radioactivity is the ratio of the radioactive isotope, i.e., Tc-99m, to the cold (stable) isotope, i.e., Tc-99, in, for example, Ci/mmol. A high-specific radioactivity product is needed for a Phase “0” study to reduce the mass.

  3. 3.

    Copper concentrations at 5 micromolar (μM) may stimulate respiratory and collapse of the membrane potential of mitochondria.

References

  • Adolph EF (1949) Quantitative relations in the physiological constitutions of mammals. Science 109:579–585

    Article  PubMed  CAS  Google Scholar 

  • Alcorn J, McNamara PJ (2003) Pharmacokinetics in the Newborn. Adv Drug Deliv Rev 35:667–6986

    Article  Google Scholar 

  • Bachmann K, Pardoe D, White D (1996) Scaling basic toxicokinetic parameters from rat to man. Environ Health Perspect 104:400–407

    Article  PubMed  CAS  Google Scholar 

  • Baker SD, Verweij J, Rowinsky EK, Donchower RC, Schellens JH, Grochow LB, Sparreboom A (2002) Role of body surface area in dosing of investigational anticancer agents in adults, 1991–2001. J Nat Cancer Inst 94:1883–1888

    Article  PubMed  CAS  Google Scholar 

  • Boisell J-P, Ribba B, Grenier E, Chapuisat G, Dronne M-A (2008) Modeling methodology in pathophysiology. Prog Biophys Mol Biol 97:28–39

    Article  Google Scholar 

  • Boxenbaum H (1984) Interspecies pharmacokinetic scaling and the evolutionary-comparative paradigm. Drug Metab Rev 15:1071–1121

    Google Scholar 

  • Chappell WR, Mordenti J (1991) Extrapolation of toxicological and pharmacological data from animals to humans. Adv Drug Res 20:1–116

    Article  CAS  Google Scholar 

  • Dedrick RL (2009) Animal scale-up. www.cc.nih.gov/researchers/training/principles/pdf/ph1.pdf

  • Dolovich M, Labiris R (2004) Imaging drug delivery and drug responses in the lung. Proc Am Thorac Soc 1:329–337

    Article  PubMed  CAS  Google Scholar 

  • FDA, Guidance for Industry: Developing Medical Imaging Drug and Biological Products, Part1, Conducting Safety Assessments 5742prt1.pdf; Part 2: Clinical Indications, 5742prt2.pdf; Part 3: Design, Analysis, and Interpretation of Clinical Studies; 5742prt3.pdf;2004. http://www.fda.gov/downloads/RegulatoryInformation/Guidances/UCM126051.pdf

  • FDA Guidance for Industry: Establishment of a Safe Starting Dose for Therapeutics. http://www.fda.gov/downloads/Drugs/Guidances/UCM078932.pdf. July 2005

  • FDA Guidance for Industry: Investigators, and Reviewers. Exploratory IND Studies. Publication: 7086fnl.pdf;2006. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm078933.pdf

  • FDA, Guidance for Industry: Determining Whether Human Research Studies Can Be Conducted Without an IND; 2010. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM229175.pdf

  • Giacomini KM, Sugiyama Y (2010) Chapter 2. Membrane Transporters and Drug Response, in, Goodman and Gilman, The Pharmacological Basis of Therapeutics, Brunton L, Chabner B, Chabner BA, Knollman B (Eds). pp 41–70. McGraw-Hill.com. http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCIQFjAA&url=http%3A%2F%2Fbooks.mcgraw-hill.com%2Fmedical%2Fgoodmanandgilman%2Fpdfs%2FCHAPTER2.pdf&ei=_Ix5UMH9AqWR0QHhsIHwCQ&usg=AFQjCNGrBX_e08ptpVuP7G9Pqs6K-Bsp0Q

  • Hanaoka K, Hosano M, Usami K, Yamazue Y, Sumita M, Komeya Y, Tsuchiya N, Im S-W, Okada M (2008) FDG uptake in bone marrow after G-CSF administration in patients with malignant lymphoma. J Nucl Med 49(Suppl):249P

    Google Scholar 

  • Holford NHG (1995) The target concentration approach to clinical drug development. Clin Pharmacokinet 29(5):287–291

    Article  PubMed  CAS  Google Scholar 

  • http://www.google.com/url?sa = t&rct = j&q = &esrc = s&source = web&cd = 5&ved = 0CEYQFjAE&url = http%3A%2F%2Fwww.medlib.am%2FFulltexts%2FDEVELOPMENT%2520of%2520Antibody-Based%2520Therapeutics%2520Translational%2520Considerations%25202012.pdf&ei = uxkEUbaVBebl0gH3koHAAw&usg = AFQjCNEsYgzowdRivcb5LeaxV_7ij9h9kg&bvm = bv.41524429,d.dmQ&cad = rja

    Google Scholar 

  • Huang J, Chang C, Lee I, Sutcliffe JL, Cherry SR, Tarantal AF (2008) Radiolabeling rhesus monkey CD34+ hematopoietic and mesenchymal stem cells with Cu-64-pyruvaldehyde-Bis(N4-methylthiosemicarbazone) for MicroPET imaging. Mol Imaging 7(1):1–11

    PubMed  CAS  Google Scholar 

  • Hung JC (2009) The Exploratory IND (Phase 0) Concept. Ann Nucl Med Sci 22:93–100

    Google Scholar 

  • Jaehde U, Sorgel F (1995) Clinical pharmacokinetics in patients with burns. Clin Pharmacokinet 29:15–28

    Article  PubMed  CAS  Google Scholar 

  • Krasovskii GN (1976) Extrapolation of experimental data from animals to man. Environ Health Perspect 13:51–58

    Article  PubMed  CAS  Google Scholar 

  • Liu CT, Higbee GA (1976) Determination of body surface area in the rhesus monkey. J Appl Physiol 40(1):101–104

    PubMed  CAS  Google Scholar 

  • Lindstad SL, Schaeffer PJ (2002) Use of allometry in predicting anatomical and physiological parameters in mammals. Lab Anim 36:1–19

    Google Scholar 

  • Mager DE (2012) Application of pharmacokinetic/pharmacodynamic modeling in the development of antibody-based therapeutics. In: Tabrizi MA, Bornstein GG, Klakamp SL (eds) Development of antibody-based therapeutics. Translational considerations. Springer Science + Business Media, New York, pp 285–302, Chapter 11

    Chapter  Google Scholar 

  • Mahmood I (1998) Integration of in-vitro data and brain weight in allometric scaling to predict clearance in humans: some suggestions. J Pharm Sci 87:527–529

    Article  PubMed  CAS  Google Scholar 

  • Mahmood I (2000) Interspecies scaling: role of protein binding in the prediction of clearance from animals to humans. J Clin Pharmacol 40:1439–1446

    Article  PubMed  CAS  Google Scholar 

  • Mahmood I (2004) Interspecies scaling of protein drugs: Prediction of clearance from animals to humans. J Pharm Sci 93(1):177–185

    Google Scholar 

  • Mahmood I (2005) Interspecies scaling of clearance, interspecies pharmacokinetic scaling: principles and application of allometric scaling. Pine House Publishers, Rockville, MD

    Google Scholar 

  • Mahmood I (2007) Application of allometric principles for the prediction of pharmacokinetics in human and veterinary drug development. Adv Drug Deliv Rev 59:1177–1192

    Article  PubMed  CAS  Google Scholar 

  • Mahmood I, Balian JD (1996) Interspecies scaling: Predicting clearance of drugs in humans: three different approaches. Xenobiotica 26:887–985

    Article  PubMed  CAS  Google Scholar 

  • Mahmood I, Green MD (2003) Selection of the first-time dose in humans: comparison of different approaches based on interspecies scaling of clearance. J Clin Pharmacol 43:692–697

    PubMed  CAS  Google Scholar 

  • McLeay SC, Morrish GA, Kirkpatrick CMJ, Green B (2012) The relationship between drug clearance and body size: Systematic review and Meta-Analysis of the literature published from 2000 to 2007. Clin Pharmacokinet 51(5):319–330

    Article  PubMed  CAS  Google Scholar 

  • Menda Y, Boles Ponto LL, Dornfeld KJ, Tewson TJ, Watkins GL, Gupta AK, Anderson C, McGuire S, Schultz MK, Sunderland JJ, Graham MM, Buatti JM (2010) Investigation of the pharmacokinetics of 3′-deoxy-3′-[18F]-fluorothymidine uptake in the bone marrow before and early after initiation of chemoradiation therapy in head and neck cancer. Nucl Med Biol 37(4):433–438

    Article  PubMed  CAS  Google Scholar 

  • Mordenti J (1986) Man versus Beast: Pharmacokinetic scaling in mammals. J Pharm Sci 75(11):1028–1040

    Article  PubMed  CAS  Google Scholar 

  • Moyer BR, Barrett JA (2009) Review: biomarkers and imaging: physics and chemistry for noninvasive analyses. Bioanalysis 1(2):321–356

    Article  PubMed  CAS  Google Scholar 

  • Muller PY, Milton MN (2012) The determination and interpretation of the therapeutic index in drug development. Nat Rev Drug Discov 11:751–761

    Article  PubMed  CAS  Google Scholar 

  • O’Flaherty EJ (1989) Interspecies conversion of kinetically equivalent doses. Risk Anal 9(4): 587–598

    Article  Google Scholar 

  • Onthank DC, Prediction ofFirst dose in humanfor radiopharmaceutical/imaging agents based on allometric scaling of pharmacokinetics in pre-clinical animal models, Ph.D. Dissertation, Worchester Polytechnic Institute. Dec 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-011006-132234/unrestricted/2Onthank-Dissertation.pdf. Accessed 26 Apr 2013

  • Parr A, Gupta M, Montague TH, Hoke F (2012) Re-introduction of a novel approach to the Use of stable isotopes in pharmacokinetic studies. AAPS J 14(3):639–645

    Article  PubMed  CAS  Google Scholar 

  • Pinkel D (1958) The use of body surface area as a criterion of drug dosage in cancer chemotherapy. Cancer Res 18:853–856

    PubMed  CAS  Google Scholar 

  • Rall DP, North WC (1953) Consideration of dose-weight relationships. Proc Soc Exp Biol Med 83:825–827

    Article  PubMed  CAS  Google Scholar 

  • Reagan-Shaw S, Nihal M, Ahmad N (2007) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  PubMed  Google Scholar 

  • Rellahan B (2009) The TeGenero Incident March 13, 2006 UK; TGN1412—a superagonist anti- CD28 antibody, FDA presentation. Division of Monoclonal Antibodies, Office of Biotechnology Products, CDER, 2009. http://www.ctti-clinicaltrials.org/resources/2009-fda-clinical-investigator-training-course/Rellahan%20case%20study.pdf. Accessed 5/6/2013

    Google Scholar 

  • Radziszewski W (2009) Estimating Starting Dose and Dose Range for First in Human Study. Merck Research Laboratory. http://mediaserver.aaps.org/meetings/09AM/Slides/11.12.09_Thu/403%20B/0900/Waldemar%20Radziszewski.pdf

  • Simpson J (2011) Compartmental Pharmacokinetic Analysis. The University of Melbourne. https://www.wwarn.org/sites/default/files/CompartmentalModelling.pdf

  • Stepniewska K (2011) Non-Compartmental Pharmacokinetics. WWARN. https://www.wwarn.org/sites/default/files/NonCompartmentalAnalysis.pdf

  • Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, Panoskaltsis N (2006) “Cytokine storm” in a Phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. New Engl J Med 355:1018–1028

    Google Scholar 

  • Savage VM, Deeds EJ, Fontana W (2008) Sizing up allometric scaling theory. PLOS Computat Biol 9(e1000171):1–17

    Google Scholar 

  • Tang H, Mayershon M (2006) A global examination of allometric scaling for predicting human drug clearance and the prediction of large vertical allometry. J Pharm Sci 95:1783–1799

    Article  PubMed  CAS  Google Scholar 

  • Wajima T, Fukumura K, Yano Y, Oguma T (2002) Prediction of human pharmacokinetics from animal data and molecular structural parameters using multivariate regression analysis. J Pharm Sci 91:2489–2499

    Article  PubMed  CAS  Google Scholar 

  • West GB, Brown JH (2005) The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol 208:1575–1592

    Article  PubMed  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  PubMed  CAS  Google Scholar 

  • Williams S-P (2012) Tissue distribution studies of protein therapeutics using molecular probes: molecular imaging. AAPS J 14(3):389–398

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Schwartz H, Larson SM (2009) Imaging surrogates of tumor response to therapy: Anatomic and functional biomarkers. J Nuc Med 50:239–249

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. Moyer .

Editor information

Editors and Affiliations

5.1 Electronic Supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Moyer, B.R. (2014). The Role of Pharmacokinetics and Allometrics in Imaging: Practical Issues and Considerations. In: Moyer, B., Cheruvu, N., Hu, TC. (eds) Pharmaco-Imaging in Drug and Biologics Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8247-5_5

Download citation

Publish with us

Policies and ethics