Cell Adhesion During Drosophila Eye Development



Over a brief few days, thousands of cells in the Drosophila eye are organized to generate a precisely patterned functional organ. Eye morphogenesis requires coordinated cell fate specification and differentiation, local cell movements, niche acquisition, and apoptosis to remove surplus cells. The eye has provided a superb model tissue for studies of the molecular bases of these events and the past decade has been punctuated with studies on the adhesion molecules at play as the fly eye develops. Because of its structure—a neuroepithelium composed of several discrete and easily discernable cell types—the eye provides unique opportunities to examine the roles of adhesion between cells as a complex organ is generated. Indeed, dynamic adhesion plays a significant role in orchestrating, regulating, and driving eye morphogenesis.


Cone Cell Planar Cell Polarity Homophilic Interaction Morphogenetic Furrow Planar Cell Polarity Signaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am grateful to Mark Hellerman, Ursula Weber, and Jun Wu for very helpful comments on this chapter.


  1. Bao S, Cagan R (2005) Preferential adhesion mediated by Hibris and Roughest regulates morphogenesis and patterning in the Drosophila eye. Dev Cell 8:925–935PubMedCrossRefGoogle Scholar
  2. Bao S, Fischbach KF, Corbin V, Cagan RL (2010) Preferential adhesion maintains separation of ommatidia in the Drosophila eye. Dev Biol 344:948–956PubMedCrossRefGoogle Scholar
  3. Brown KE, Freeman M (2003) Egfr signalling defines a protective function for ommatidial orientation in the Drosophila eye. Development 130:5401–5412PubMedCrossRefGoogle Scholar
  4. Brown KE, Baonza A, Freeman M (2006) Epithelial cell adhesion in the developing Drosophila retina is regulated by Atonal and the EGF receptor pathway. Dev Biol 300:710–721PubMedCrossRefGoogle Scholar
  5. Cagan R (2009) Principles of Drosophila eye differentiation. Curr Top Dev Biol 89:115–135PubMedCrossRefGoogle Scholar
  6. Cagan RL (2011) The Drosophila nephrocyte. Curr Opin Nephrol Hypertens 20:409–415PubMedCrossRefGoogle Scholar
  7. Cagan RL, Ready DF (1989) The emergence of order in the Drosophila pupal retina. Dev Biol 136:346–362PubMedCrossRefGoogle Scholar
  8. Chang LH, Chen P, Lien MT, Ho YH, Lin CM, Pan YT, Wei SY, Hsu JC (2011) Differential adhesion and actomyosin cable collaborate to drive Echinoid-mediated cell sorting. Development 138:3803–3812PubMedCrossRefGoogle Scholar
  9. Choi KW, Benzer S (1994) Rotation of photoreceptor clusters in the developing Drosophila eye requires the nemo gene. Cell 78:125–136PubMedCrossRefGoogle Scholar
  10. Chou YH, Chien CT (2002) Scabrous controls ommatidial rotation in the Drosophila compound eye. Dev Cell 3:839–850PubMedCrossRefGoogle Scholar
  11. Chu D, Pan H, Wan P, Wu J, Luo J, Zhu H, Chen J (2012) AIP1 acts with cofilin to control actin dynamics during epithelial morphogenesis. Development 139:3561–3571PubMedCrossRefGoogle Scholar
  12. Cooper MT, Bray SJ (1999) Frizzled regulation of Notch signalling polarizes cell fate in the Drosophila eye. Nature 397:526–530PubMedCrossRefGoogle Scholar
  13. Cordero JB, Larson DE, Craig CR, Hays R, Cagan R (2007) Dynamic Decapentaplegic signaling regulates patterning and adhesion in the Drosophila pupal retina. Development 134:1861–1871PubMedCrossRefGoogle Scholar
  14. De Graeve FM, Van de Bor V, Ghiglione C, Cerezo D, Jouandin P, Ueda R, Shashidhara LS, Noselli S (2012) Drosophila apc regulates delamination of invasive epithelial clusters. Dev Biol 368:76–85PubMedCrossRefGoogle Scholar
  15. Djiane A, Shimizu H, Wilkin M, Mazleyrat S, Jennings MD, Avis J, Bray S, Baron M (2011) Su(dx) E3 ubiquitin ligase-dependent and -independent functions of polychaetoid, the Drosophila ZO-1 homologue. J Cell Biol 192:189–200PubMedCrossRefGoogle Scholar
  16. Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI (2005) Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 123:903–915PubMedCrossRefGoogle Scholar
  17. Duguay D, Foty RA, Steinberg MS (2003) Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev Biol 253:309–323PubMedCrossRefGoogle Scholar
  18. Escudero LM, Bischoff M, Freeman M (2007) Myosin II regulates complex cellular arrangement and epithelial architecture in Drosophila. Dev Cell 13:717–729PubMedCrossRefGoogle Scholar
  19. Fanto M, Mlodzik M (1999) Asymmetric Notch activation specifies photoreceptors R3 and R4 and planar polarity in the Drosophila eye. Nature 397:523–526PubMedCrossRefGoogle Scholar
  20. Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P (2007) Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol 17:428–437PubMedCrossRefGoogle Scholar
  21. Fetting JL, Spencer SA, Wolff T (2009) The cell adhesion molecules Echinoid and Friend of Echinoid coordinate cell adhesion and cell signaling to regulate the fidelity of ommatidial rotation in the Drosophila eye. Development 136:3323–3333PubMedCrossRefGoogle Scholar
  22. Fiehler RW, Wolff T (2007) Drosophila Myosin II, Zipper, is essential for ommatidial rotation. Dev Biol 310:348–362PubMedCrossRefGoogle Scholar
  23. Furuse M, Tsukita S (2006) Claudins in occluding junctions of humans and flies. Trends Cell Biol 16:181–188PubMedCrossRefGoogle Scholar
  24. Gaengel K, Mlodzik M (2003) Egfr signaling regulates ommatidial rotation and cell motility in the Drosophila eye via MAPK/Pnt signaling and the Ras effector Canoe/AF6. Development 130:5413–5423PubMedCrossRefGoogle Scholar
  25. Gemp IM, Carthew RW, Hilgenfeldt S (2011) Cadherin-dependent cell morphology in an epithelium: constructing a quantitative dynamical model. PLoS Comput Biol 7:e1002115CrossRefGoogle Scholar
  26. Goodrich LV, Strutt D (2011) Principles of planar polarity in animal development. Development 138:1877–1892PubMedCrossRefGoogle Scholar
  27. Grillo-Hill BK, Wolff T (2009) Dynamic cell shapes and contacts in the developing Drosophila retina are regulated by the Ig cell adhesion protein hibris. Dev Dyn 238:2223–2234PubMedCrossRefGoogle Scholar
  28. Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6:622–634PubMedCrossRefGoogle Scholar
  29. Hayashi T, Carthew RW (2004) Surface mechanics mediate pattern formation in the developing retina. Nature 431:647–652PubMedCrossRefGoogle Scholar
  30. Hilgenfeldt S, Erisken S, Carthew RW (2008) Physical modeling of cell geometric order in an epithelial tissue. Proc Natl Acad Sci U S A 105:907–911PubMedCrossRefGoogle Scholar
  31. Ho YH, Lien MT, Lin CM, Wei SY, Chang LH, Hsu JC (2010) Echinoid regulates Flamingo endocytosis to control ommatidial rotation in the Drosophila eye. Development 137:745–754PubMedCrossRefGoogle Scholar
  32. Hohne M, Lorscheider J, Bardeleben A von, Dufner M, Scharf MA, Godel M, Helmstadter M, Schurek EM, Zank S, Gerke P et al (2011) The BAR domain protein PICK1 regulates cell recognition and morphogenesis by interacting with Neph proteins. Mol Cell Biol 31:3241–3251PubMedCrossRefGoogle Scholar
  33. Huber AH, Weis WI (2001) The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell 105:391–402PubMedCrossRefGoogle Scholar
  34. Johnson RI, Seppa MJ, Cagan RL (2008) The Drosophila CD2AP/CIN85 orthologue Cindr regulates junctions and cytoskeleton dynamics during tissue patterning. J Cell Biol 180:1191–1204PubMedCrossRefGoogle Scholar
  35. Johnson RI, Sedgwick A, D’Souza-Schorey C, Cagan RL (2011) Role for a Cindr-Arf6 axis in patterning emerging epithelia. Mol Biol Cell 22:4513–4526PubMedCrossRefGoogle Scholar
  36. Johnson RI, Bao S, Cagan RL (2012) Interactions between Drosophila IgCAM adhesion receptors and Cindr, the Cd2ap/Cin85 ortholog. Dev Dyn 241:1933–1943PubMedCrossRefGoogle Scholar
  37. Kafer J, Hayashi T, Maree AF, Carthew RW, Graner F (2007) Cell adhesion and cortex contractility determine cell patterning in the Drosophila retina. Proc Natl Acad Sci U S A 104:18549–18554PubMedCrossRefGoogle Scholar
  38. Knust E (2007) Photoreceptor morphogenesis and retinal degeneration: lessons from Drosophila. Curr Opin Neurobiol 17:541–547PubMedCrossRefGoogle Scholar
  39. Krejci A, Bernard F, Housden BE, Collins S, Bray SJ (2009) Direct response to Notch activation: signaling crosstalk and incoherent logic. Sci Signal 2:ra1CrossRefGoogle Scholar
  40. Kumar JP (2012) Building an ommatidium one cell at a time. Dev Dyn 241:136–149PubMedCrossRefGoogle Scholar
  41. Larson DE, Liberman Z, Cagan RL (2008) Cellular behavior in the developing Drosophila pupal retina. Mech Dev 125:223–232PubMedCrossRefGoogle Scholar
  42. Larson DE, Johnson RI, Swat M, Cordero JB, Glazier JA, Cagan RL (2010) Computer simulation of cellular patterning within the Drosophila pupal eye. PLoS Comput Biol 6:e1000841CrossRefGoogle Scholar
  43. Maung SM, Jenny A (2011) Planar cell polarity in Drosophila. Organogenesis 7:165–179PubMedCrossRefGoogle Scholar
  44. Mirkovic I, Mlodzik M (2006) Cooperative activities of drosophila DE-cadherin and DN-cadherin regulate the cell motility process of ommatidial rotation. Development 133:3283–3293PubMedCrossRefGoogle Scholar
  45. Mirkovic I, Gault WJ, Rahnama M, Jenny A, Gaengel K, Bessette D, Gottardi CJ, Verheyen EM, Mlodzik M (2011) Nemo kinase phosphorylates beta-catenin to promote ommatidial rotation and connects core PCP factors to E-cadherin-beta-catenin. Nat Struct Mol Biol 18:665–672PubMedCrossRefGoogle Scholar
  46. Miyashita Y, Ozawa M (2007) Increased internalization of p120-uncoupled E-cadherin and a requirement for a dileucine motif in the cytoplasmic domain for endocytosis of the protein. J Biol Chem282:11540–11548Google Scholar
  47. Muller HA (2000) Genetic control of epithelial cell polarity: lessons from Drosophila. Dev Dyn 218:52–67PubMedCrossRefGoogle Scholar
  48. Munoz-Soriano V, Belacortu Y, Durupt FC, Munoz-Descalzo S, Paricio N (2011) Mtl interacts with members of Egfr signaling and cell adhesion genes in the Drosophila eye. Fly (Austin) 5:88–101CrossRefGoogle Scholar
  49. Nagaraj R, Banerjee U (2007) Combinatorial signaling in the specification of primary pigment cells in the Drosophila eye. Development 134:825–831PubMedCrossRefGoogle Scholar
  50. Nelson WJ (2008) Regulation of cell-cell adhesion by the cadherin-catenin complex. Biochem Soc Trans 36:149–155PubMedCrossRefGoogle Scholar
  51. Niewiadomska P, Godt D, Tepass U (1999) DE-Cadherin is required for intercellular motility during Drosophila oogenesis. J Cell Biol 144:533–547PubMedCrossRefGoogle Scholar
  52. O’Keefe DD, Gonzalez-Nino E, Burnett M, Dylla L, Lambeth SM, Licon E, Amesoli C, Edgar BA, Curtiss J (2009) Rap1 maintains adhesion between cells to affect Egfr signaling and planar cell polarity in Drosophila. Dev Biol 333:143–160PubMedCrossRefGoogle Scholar
  53. Ooshio T, Fujita N, Yamada A, Sato T, Kitagawa Y, Okamoto R, Nakata S, Miki A, Irie K, Takai Y (2007) Cooperative roles of Par-3 and afadin in the formation of adherens and tight junctions. J Cell Sci 120:2352–2365PubMedCrossRefGoogle Scholar
  54. Pacquelet A, Rorth P (2005) Regulatory mechanisms required for DE-cadherin function in cell migration and other types of adhesion. J Cell Biol 170:803–812PubMedCrossRefGoogle Scholar
  55. Reiter C, Schimansky T, Nie Z, Fischbach KF (1996) Reorganization of membrane contacts prior to apoptosis in the Drosophila retina: the role of the IrreC-rst protein. Development 122:1931–1940PubMedGoogle Scholar
  56. Schwabe T, Gontang AC, Clandinin TR (2009) More than just glue: the diverse roles of cell adhesion molecules in the Drosophila nervous system. Cell Adh Migr 3:36–42PubMedCrossRefGoogle Scholar
  57. Seppa MJ, Johnson RI, Bao S, Cagan RL (2008) Polychaetoid controls patterning by modulating adhesion in the Drosophila pupal retina. Dev Biol 318:1–16PubMedCrossRefGoogle Scholar
  58. Singh J, Mlodzik M (2012) Hibris, a Drosophila nephrin homolog, is required for presenilin-mediated Notch and APP-like cleavages. Dev Cell 23:82–96PubMedCrossRefGoogle Scholar
  59. Staley BK, Irvine KD (2012) Hippo signaling in Drosophila: recent advances and insights. Dev Dyn 241:3–15PubMedCrossRefGoogle Scholar
  60. Steinberg MS (1970) Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J Exp Zool 173:395–433PubMedCrossRefGoogle Scholar
  61. Steinberg MS (2007) Differential adhesion in morphogenesis: a modern view. Curr Opin Genet Dev 17:281–286PubMedCrossRefGoogle Scholar
  62. Steinberg MS, Takeichi M (1994) Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc Natl Acad Sci U S A 91:206–209PubMedCrossRefGoogle Scholar
  63. Strutt H, Strutt D (2003) EGF signaling and ommatidial rotation in the Drosophila eye. Curr Biol 13:1451–1457PubMedCrossRefGoogle Scholar
  64. Takahashi K, Nakanishi H, Miyahara M, Mandai K, Satoh K, Satoh A, Nishioka H, Aoki J, Nomoto A, Mizoguchi A et al (1999) Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein. J Cell Biol 145:539–549PubMedCrossRefGoogle Scholar
  65. Tepass U, Harris KP (2007) Adherens junctions in Drosophila retinal morphogenesis. Trends Cell Biol 17(1):26–35PubMedCrossRefGoogle Scholar
  66. Tepass U, Tanentzapf G, Ward R, Fehon R (2001) Epithelial cell polarity and cell junctions in Drosophila. Annu Rev Genet 35:747–784PubMedCrossRefGoogle Scholar
  67. Thoreson MA, Anastasiadis PZ, Daniel JM, Ireton RC, Wheelock MJ, Johnson KR, Hummingbird DK, Reynolds AB (2000) Selective uncoupling of p120(ctn) from E-cadherin disrupts strong adhesion. J Cell Biol 148:189–202PubMedCrossRefGoogle Scholar
  68. Tossidou I, Teng B, Drobot L, Meyer-Schwesinger C, Worthmann K, Haller H, Schiffer M (2010) CIN85/RukL is a novel binding partner of nephrin and podocin and mediates slit diaphragm turnover in podocytes. J Biol Chem 285:25285–25295PubMedCrossRefGoogle Scholar
  69. Verdier V, Guang Chao C, Settleman J (2006) Rho-kinase regulates tissue morphogenesis via non-muscle myosin and LIM-kinase during Drosophila development. BMC Dev Biol 6:38PubMedCrossRefGoogle Scholar
  70. Vidal M, Wells S, Ryan A, Cagan R (2005) ZD6474 suppresses oncogenic RET isoforms in a Drosophila model for type 2 multiple endocrine neoplasia syndromes and papillary thyroid carcinoma. Cancer Res 65:3538–3541PubMedCrossRefGoogle Scholar
  71. Wei SY, Escudero LM, Yu F, Chang LH, Chen LY, Ho YH, Lin CM, Chou CS, Chia W, Modolell J et al (2005) Echinoid is a component of adherens junctions that cooperates with DE-Cadherin to mediate cell adhesion. Dev Cell 8:493–504PubMedCrossRefGoogle Scholar
  72. Weis WI, Nelson WJ (2006) Re-solving the cadherin-catenin-actin conundrum. J Biol Chem 281:35593–35597PubMedCrossRefGoogle Scholar
  73. Winter CG, Wang B, Ballew A, Royou A, Karess R, Axelrod JD, Luo L (2001) Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell 105:81–91PubMedCrossRefGoogle Scholar
  74. Xiao K, Garner J, Buckley KM, Vincent PA, Chiasson CM, Dejana E, Faundez V, Kowalczyk AP (2005) p120-Catenin regulates clathrin-dependent endocytosis of VE-cadherin. Mol Biol Cell16:5141–5151Google Scholar
  75. Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ (2005) Deconstructing the cadherin-catenin-actin complex. Cell 123:889–901PubMedCrossRefGoogle Scholar
  76. Yap AS, Crampton MS, Hardin J (2007) Making and breaking contacts: the cellular biology of cadherin regulation. Curr Opin Cell Biol 19:508–514PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Biology DepartmentWesleyan UniversityMiddletownUSA

Personalised recommendations