Advertisement

Development and Evolution of the Drosophila Bolwig’s Organ: A Compound Eye Relict

  • Markus FriedrichEmail author
Chapter

Abstract

Bolwig’s organs, the larval eyes of Drosophila, consist of only 12 photoreceptors, lacking accessory cells such as lens and pigment cells. Because of their minimalist organization, these visual organs continue to serve as an efficient system for the genetic analysis of visual behavior, circadian behavior, axonal targeting, cellular specification, and cellular differentiation. The resultant body of data has reached a new level that warrants integrated review for reference in future research efforts. A comparative perspective underlines the fact that the Bolwig’s organs are evolutionarily related to the adult compound eye. As a reflection of this, shared genetic mechanisms regulate the specification and differentiation of photoreceptor subtypes in both organs, despite over 300 million of years of evolutionary diversification since their joint origin from the compound eye in the ancestor of holometabolous insects.

Keywords

Epithelial Growth Factor Receptor Postembryonic Development Holometabolous Insect Visual Organ Founder Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I am grateful to Amit Singh for the opportunity to provide this book chapter, Rewaa Yas for proofreading of the manuscript, Andrew Zelhof for sharing unpublished information and Tiffany Cook and Andrew Zelhof for valuable comments. Research in the Friedrich lab has been supported by NSF awards IOS 0951886, IOS 0091926, and EF-0334948.

References

  1. Anderson J, Salzer CL, Kumar JP (2006) Regulation of the retinal determination gene dachshund in the embryonic head and developing eye of Drosophila. Dev Biol 297:536–549PubMedGoogle Scholar
  2. Bao R, Friedrich M (2009) Molecular evolution of the Drosophila retinome: exceptional gene gain in the higher Diptera. Mol Biol Evol 26:1273–1287PubMedGoogle Scholar
  3. Bolwig N (1946) Senses and sense organs of the anterior end of the house fly larvae. Vidensk Med Dansk Naturh Foren 109:81–217Google Scholar
  4. Bonini NM, Leiserson WM, Benzer S (1993) The eyes absent gene: genetic control of cell survival and differentiation in the developing Drosophila eye. Cell 72:379–395PubMedGoogle Scholar
  5. Bonini NM, Bui QT, Grayboard GL, Warrick JM (1997) The Drosophila eyes absent gene directs ectopic eye formation in a pathway conserved between flies and vertebrates. Development 124:4819–4826PubMedGoogle Scholar
  6. Borod ER, Heberlein U (1998) Mutual regulation of decapentaplegic and hedgehog during the initiation of differentiation in the Drosophila retina. Dev Biol 197:187–197PubMedGoogle Scholar
  7. Buschbeck EK, Hauser M (2009) The visual system of male scale insects. Naturwissenschaften 96:365–374PubMedGoogle Scholar
  8. Caravas J, Friedrich M (2013) Shaking the Diptera tree of life: performance analysis of nuclear and mitochondrial sequence data partitions. Syst Entomol 38(1):93–103.Google Scholar
  9. Chang T, Mazotta J, Dumstrei K, Dumitrescu A, Hartenstein V (2001) Dpp and Hh signaling in the Drosophila embryonic eye field. Development 128:4691–4704PubMedGoogle Scholar
  10. Chang T, Younossi-Hartenstein A, Hartenstein V (2003) Development of neural lineages derived from the sine oculis positive eye field of Drosophila. Arthropod Struct Dev 32:303–317PubMedGoogle Scholar
  11. Charlton-Perkins M, Whitaker SL, Fei Y, Xie B, Li-Kroeger D, Gebelein B, Cook T (2011) Prospero and Pax2 combinatorially control neural cell fate decisions by modulating Ras- and Notch-dependent signaling. Neural Develop 6:20Google Scholar
  12. Chen Q, Li T, Hua B (2012) Ultrastructure of the larval eye of the scorpionfly Panorpa dubia (Mecoptera: Panorpidae) with implications for the evolutionary origin of holometabolous larvae. J Morphol 273:561–571PubMedGoogle Scholar
  13. Cheyette BN, Green PJ, Martin K, Garren H, Hartenstein V, Zipursky SL (1994) The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 12:977–996PubMedGoogle Scholar
  14. Chu-Lagraff Q, Wright DM, McNeil LK, Doe CQ (1991) The prospero gene encodes a divergent homeodomain protein that controls neuronal identity in Drosophila. Development Suppl 2:79–85Google Scholar
  15. Cook T, Pichaud F, Sonneville R, Papatsenko D, Desplan C (2003) Distinction between color photoreceptor cell fates is controlled by Prospero in Drosophila. Dev Cell 4:853–864PubMedGoogle Scholar
  16. Curtiss J, Mlodzik M (2000) Morphogenetic furrow initiation and progression during eye development in Drosophila: the roles of decapentaplegic, hedgehog and eyes absent. Development 127:1325–1336PubMedGoogle Scholar
  17. Czerny T, Halder G, Kloter U, Souabni A, Gehring WJ, Busslinger M (1999) Twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development. Mol Cell 3:297–307PubMedGoogle Scholar
  18. Daniel A, Dumstrei K, Lengyel JA, Hartenstein V (1999) The control of cell fate in the embryonic visual system by atonal, tailless and EGFR signaling. Development 126:2945–2954PubMedGoogle Scholar
  19. Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35:125–129Google Scholar
  20. Dokucu ME, Zipursky SL, Cagan RL (1996) Atonal, rough and the resolution of proneural clusters in the developing Drosophila retina. Development 122:4139–4147PubMedGoogle Scholar
  21. Domingos PM, Brown S, Barrio R, Ratnakumar K, Frankfort BJ, Mardon G, Steller H, Mollereau B (2004a) Regulation of R7 and R8 differentiation by the spalt genes. Dev Biol 273:121–133Google Scholar
  22. Domingos PM, Mlodzik M, Mendes CS, Brown S, Steller H, Mollereau B (2004b) Spalt transcription factors are required for R3/R4 specification and establishment of planar cell polarity in the Drosophila eye. Development 131:5695–5702Google Scholar
  23. Dominguez M (1999) Dual role for hedgehog in the regulation of the proneural gene atonal during ommatidia development. Development 126:2345–2353PubMedGoogle Scholar
  24. Dominguez M, Hafen E (1997) Hedgehog directly controls initiation and propagation of retinal differentiation in the Drosophila eye. Genes Dev 11:3254–3264PubMedGoogle Scholar
  25. Dreyer D, Vitt H, Dippel S, Goetz B, El Jundi B, Kollmann M, Huetteroth W, Schachtner J (2010) 3D standard brain of the red flour beetle Tribolium castaneum: a tool to study metamorphic development and adult plasticity. Front Syst Neurosci 4:3PubMedGoogle Scholar
  26. Fichelson P, Brigui A, Pichaud F (2012) Orthodenticle and Kruppel homolog 1 regulate Drosophila photoreceptor maturation. Proc Natl Acad Sci U S A 109:7893–7898PubMedGoogle Scholar
  27. Finkelstein R, Smouse D, Capaci TM, Spradling AC, Perrimon N (1990) The orthodenticle gene encodes a novel homeo domain protein involved in the development of the Drosophila nervous system and ocellar visual structures. Genes Dev 4:1516–1527PubMedGoogle Scholar
  28. Fleissner G, Fleissner G, Frisch B (1993) A new type of putative non-visual photoreceptors in the optic lobe of beetles. Cell Tissue Res 273:435–445PubMedGoogle Scholar
  29. Frankfort BJ, Nolo R, Zhang Z, Bellen H, Mardon G (2001) Senseless repression of rough is required for R8 photoreceptor differentiation in the developing Drosophila eye. Neuron 32:403–414PubMedGoogle Scholar
  30. Frankfort BJ, Pepple KL, Mamlouk M, Rose MF, Mardon G (2004) Senseless is required for pupal retinal development in Drosophila. Genesis 38:182–194PubMedGoogle Scholar
  31. Friedrich M (2006a) Ancient mechanisms of visual sense organ development based on comparison of the gene networks controlling larval eye, ocellus, and compound eye specification in Drosophila. Arth Struc Dev 35:357–378Google Scholar
  32. Friedrich M (2006b) Continuity versus split and reconstitution: exploring the molecular developmental corollaries of insect eye primordium evolution. Dev Biol 299:310–329Google Scholar
  33. Friedrich M (2008) Opsins and cell fate in the Drosophila Bolwig organ: tricky lessons in homology inference. Bioessays 30:980–993PubMedGoogle Scholar
  34. Friedrich M (2011) Drosophila as developmental paradigm of regressive brain evolution: proof of principle in the visual system. Brain Behav Evol 78(3):199–215.Google Scholar
  35. Friedrich M, Dong Y, Jackowska M (2006) Insect interordinal relationships: insights from the visual system. Arthropod Syst Phyl 64:133–148Google Scholar
  36. Friedrich M, Wood EJ, Wu M (2011) Developmental evolution of the insect retina: insights from standardized numbering of homologous photoreceptors. J Exp Zool B Mol Dev Evol 316:484–499PubMedGoogle Scholar
  37. Furukubo-Tokunaga K, Adachi Y, Kurusu M, Walldorf U (2009) Brain patterning defects caused by mutations of the twin of eyeless gene in Drosophila melanogaster. Fly (Austin) 3:263–269Google Scholar
  38. Gilbert C (1994) Form and function of stemmata in larvae of holometabolous insects. Annu Rev Entomol 39:323–349Google Scholar
  39. Goriely A, Mollereau B, Coffinier C, Desplan C (1999) Munster, a novel paired-class homeobox gene specifically expressed in the Drosophila larval eye. Mech Dev 88:107–110PubMedGoogle Scholar
  40. Green P, Hartenstein AY, Hartenstein V (1993) The embryonic development of the Drosophila visual system. Cell Tissue Res 273:583–598PubMedGoogle Scholar
  41. Greenwood S, Struhl G (1999) Progression of the morphogenetic furrow in the Drosophila eye: the roles of hedgehog, decapentaplegic and the raf pathway. Development 126:5795–5808PubMedGoogle Scholar
  42. Hagberg M (1986) Ultrastructure and central projections of extraocular photoreceptors in caddiesflies (Insecta, Trichoptera). Cell Tissue Res 245:643–648Google Scholar
  43. Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267:1788–1792PubMedGoogle Scholar
  44. Halder G, Callaerts P, Flister S, Walldorf U, Kloter U, Gehring WJ (1998) Eyeless initiates the expression of both sine oculis and eyes absent during Drosophila compound eye development. Development 125:2181–2191PubMedGoogle Scholar
  45. Halfar K, Rommel C, Stocker H, Hafen E (2001) Ras controls growth, survival and differentiation in the Drosophila eye by different thresholds of MAP kinase activity. Development 128:1687–1696PubMedGoogle Scholar
  46. Hartenstein AY 1993. Atlas of Drosophila development. Cold Spring Harbor Laboratory Press, USA, pp 32–34Google Scholar
  47. Harzsch S, Dircksen H, Beltz B (2009) Development of pigment-dispersing hormone-immunoreactive neurons in the American lobster: homology to the insect circadian pacemaker system? Cell Tissue Res 335:417–429PubMedGoogle Scholar
  48. Heberlein U, Mlodzik M, Rubin GM (1991) Cell-fate determination in the developing Drosophila eye—role of the rough gene. Development 112:703–712PubMedGoogle Scholar
  49. Heberlein U, Wolff T, Rubin GM (1993) The TGF beta homolog dpp and the segment polarity gene hedgehog are required for propagation of a morphogenetic wave in the Drosophila retina. Cell 75:913–926PubMedGoogle Scholar
  50. Heberlein U, Singh CM, Luk AY, Donohoe TJ (1995) Growth and differentiation in the Drosophila eye coordinated by hedgehog. Nature 373:709–711PubMedGoogle Scholar
  51. Helfrich-Förster C (2004) The circadian clock in the brain: a structural and functional comparison between mammals and insects. J Comp Physiol A 190:601–613Google Scholar
  52. Helfrich-Förster C, Edwards T, Yasuyama K, Wisotzki B, Schneuwly S, Stanewsky R, Meinertzhagen IA, Hofbauer A (2002) The extraretinal eyelet of Drosophila: development, ultrastructure, and putative circadian function. J Neurosci 22:9255–9266PubMedGoogle Scholar
  53. Hinnemann A, Niederegger S, Hanslik U, Heinzel HG, Spiess R (2010) See the light: electrophysiological characterization of the Bolwig organ's light response of Calliphora vicina 3rd instar larvae. J Insect Physiol 56:1651–1658Google Scholar
  54. Hofbauer A, Buchner E (1989) Does Drosophila have seven eyes? Naturwissenschaften 76:335–336Google Scholar
  55. Holmes AL, Raper RN, Heilig JS (1998) Genetic analysis of Drosophila larval optic nerve development. Genetics 148:1189–1201PubMedGoogle Scholar
  56. Homberg U, Würden S (1997) Movement-sensitive, polarization-sensitive, and light-sensitive neurons of the medulla and accessory medulla of the locust, Schistocerca gregaria. J Comp Neurol 386:329–346PubMedGoogle Scholar
  57. Homberg U, Reischig T, Stengl M (2003) Neural organization of the circadian system of the cockroach Leucophaea maderae. Chronobiol Int 20:577–591PubMedGoogle Scholar
  58. Ichikawa T (1991) Brain photoreceptors in the pupal and adult butterfly: fate of the larval ocelli. Zool Sci 8:471–476Google Scholar
  59. Iyengar BG, Chou CJ, Sharma A, Atwood HL (2006) Modular neuropile organization in the Drosophila larval brain facilitates identification and mapping of central neurons. J Comp Neurol 499:583–602PubMedGoogle Scholar
  60. Jarman AP, Grau Y, Jan LY, Jan YN (1993) Atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell 73:1307–1321PubMedGoogle Scholar
  61. Jarman AP, Grell EH, Ackerman L, Jan LY, Jan YN (1994) Atonal is the proneural gene for Drosophila photoreceptors. Nature 369:398–400PubMedGoogle Scholar
  62. Jekely G, Colombelli J, Hausen H, Guy K, Stelzer E, Nedelec F, Arendt D (2008) Mechanism of phototaxis in marine zooplankton. Nature 456:395–399PubMedGoogle Scholar
  63. Johnston RJ Jr, Robert J, Otake Y, Sood P, Vogt N, Behnia R, Vasiliauskas D, McDonald E, Xie B, Koenig S, Wolf R, Cook T, Gebelein B, Kussell E, Nakagoshi H, Desplan C (2011) Interlocked feedforward loops control cell-type-specific Rhodopsin expression in the Drosophila eye. Cell 145:956–968PubMedGoogle Scholar
  64. Jurgens G (1987) Segmental organization of the tail region in the embryo of Drosophila melanogaster. Roux's Arch Dev Biol 196:141–157Google Scholar
  65. Jurgens G, Hartenstein V (1993) The terminal regions of the body pattern. In: Bate M, Martinez Arias A (eds) The development of Drosophila melanogaster. Cold Spring Harbour Laboratory Press, New York, pp 687–746Google Scholar
  66. Jurgens G, Lehmann R, Schardin M, Nusslein-Volhard C (1986) Segmental organization of the head in the embryo of Drosophila melanogaster. Roux's Arch Dev Biol 195:359–377Google Scholar
  67. Justice ED, Macedonia NJ, Hamilton C, Condron B (2012) The simple fly larval visual system can process complex images. Nat Commun 3:1156Google Scholar
  68. Kaneko M, Hall JC (2000) Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. J Comp Neurol 422:66–94PubMedGoogle Scholar
  69. Keene AC, Mazzoni EO, Zhen J, Younger MA, Yamaguchi S, Blau J, Desplan C, Sprecher SG (2011) Distinct visual pathways mediate Drosophila larval light avoidance and circadian clock entrainment. J Neurosci 31:6527–6534PubMedGoogle Scholar
  70. Keene AC, Sprecher SG (2011) Seeing the light: photobehavior in fruit fly larvae. Trends Neurosci 35:104–110Google Scholar
  71. Kenyon KL, Ranade SS, Curtiss J, Mlodzik M, Pignoni F (2003) Coordinating proliferation and tissue specification to promote regional identity in the Drosophila head. Dev Cell 5:403–414PubMedGoogle Scholar
  72. Kristensen N (1999) Phylogeny of endopterygote insects, the most successful lineage of living organisms. Eur J Entomol 96:237–253Google Scholar
  73. Kumar JP, Moses K (2001) Expression of evolutionarily conserved eye specification genes during Drosophila embryogenesis. Dev Genes Evol 211:406–414PubMedGoogle Scholar
  74. Kurusu M, Nagao T, Walldorf U, Flister S, Gehring WJ, Furukubo-Tokunaga K (2000) Genetic control of development of the mushroom bodies, the associative learning centers in the Drosophila brain, by the eyeless, twin of eyeless, and dachshund genes. Proc Nat Acad Sci U S A 97:2140–2144Google Scholar
  75. Land MF, Nilsson DE (2002) Animal eyes. Oxford University Press, OxfordGoogle Scholar
  76. Lilly M, Carlson J (1990) smellblind: a gene required for Drosophila olfaction. Genetics 124:293PubMedGoogle Scholar
  77. Liu Z, Friedrich M (2004) The Tribolium homologue of glass and the evolution of insect larval eyes. Dev Biol 269:36–54PubMedGoogle Scholar
  78. Liu Z, Yang X, Dong Y, Friedrich M (2006) Tracking down the “head blob”: comparative analysis of wingless expression in the embryonic insect procephalon reveals progressive reduction of ocular segment patterning in higher insects. Arthropod Struct Dev 35:341–356PubMedGoogle Scholar
  79. Ma CY, Zhou Y, Beachy PA, Moses K (1993) The segment polarity gene hedgehog is required for progression of the morphogenetic furrow in the developing Drosophila eye. Cell 75:927–938PubMedGoogle Scholar
  80. Malpel S, Klarsfeld A, Rouyer F (2002) Larval optic nerve and adult extra-retinal photoreceptors sequentially associate with clock neurons during Drosophila brain development. Development 129:1443–1453PubMedGoogle Scholar
  81. Mardon G, Solomon NM, Rubin GM (1994) dachshund encodes a nuclear protein required for normal eye and leg development in Drosophila. Development 120:3473–3486PubMedGoogle Scholar
  82. Mazzoni EO, Desplan C, Blau J (2005) Circadian pacemaker neurons transmit and modulate visual information to control a rapid behavioral response. Neuron 45:293–300PubMedGoogle Scholar
  83. McDonald EC, Xie B, Workman M, Charlton-Perkins M, Terrell DA, Reischl J, Wimmer EA, Gebelein BA, Cook TA (2010) Separable transcriptional regulatory domains within Otd control photoreceptor terminal differentiation events. Dev Biol 347:122–132PubMedGoogle Scholar
  84. Melzer RR (2009) Persisting stemma neuropils in Chaoborus crystallinus (Diptera: Chaoboridae): development and evolution of a bipartite visual system. J Morphol 270:1524–1530PubMedGoogle Scholar
  85. Melzer RR, Paulus HF (1989) Evolutionswege zum Larvalauge der Insekten—Die Stemmata der höheren Dipteren und ihre Abwandlung zum Bolwig-Organ. Z Zool Syst Evol 27:200–245Google Scholar
  86. Mikeladze-Dvali T, Wernet MF, Pistillo D, Mazzoni EO, Teleman AA, Chen YW, Cohen S, Desplan C (2005) The growth regulators warts/lats and melted interact in a bistable loop to specify opposite fates in Drosophila R8 photoreceptors. Cell 122:775–787PubMedGoogle Scholar
  87. Mishra M, Oke A, Lebel C, McDonald EC, Plummer Z, Cook TA, Zelhof AC (2010) Pph13 and Orthodenticle define a dual regulatory pathway for photoreceptor cell morphogenesis and function. Development 137:2895–2904PubMedGoogle Scholar
  88. Mlodzik M, Hiromi Y, Weber U, Goodman CS, Rubin GM (1990) The Drosophila seven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates. Cell 60:211–224PubMedGoogle Scholar
  89. Mollereau B, Dominguez M, Webel R, Colley NJ, Keung B, Celis JF de, Desplan C (2001) Two-step process for photoreceptor formation in Drosophila. Nature 412:911–913PubMedGoogle Scholar
  90. Morey M, Yee, SK, Herman, T, Nern A, Blanco E, Zipursky SL (2008) Coordinate control of synaptic-layer specificity and rhodopsins in photoreceptor neurons. Nature 456:795–799Google Scholar
  91. Moses K, Ellis MC, Rubin GM (1989) The glass gene encodes a zinc-finger protein required by Drosophila photoreceptor cells. Nature 340:531–536PubMedGoogle Scholar
  92. Moses K, Rubin GM (1991) Glass encodes a site-specific DNA binding protein that is regulated in response to positional signals in the developing Drosophila eye. Genes Dev 5:583–593PubMedGoogle Scholar
  93. Mukhopadhyay M, Campos AR (1995) The larval optic nerve is required for the development of an identified serotonergic arborization in Drosophila melanogaster. Dev Biol 169:629–643PubMedGoogle Scholar
  94. Namba R, Minden JS (1999) Fate mapping of Drosophila embryonic mitotic domain 20 reveals that the larval visual system is derived from a subdomain of a few cells. Dev Biol 212:465–476PubMedGoogle Scholar
  95. Niimi T, Seimiya M, Kloter U, Flister S, Gehring WJ (1999) Direct regulatory interaction of the eyeless protein with an eye-specific enhancer in the sine oculis gene during eye induction in Drosophila. Development 126:2253–2260PubMedGoogle Scholar
  96. Niven JE, Laughlin SB (2008) Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 211:1792–1804PubMedGoogle Scholar
  97. Nolo R, Abbott LA, Bellen HJ (2000) Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102:349–362PubMedGoogle Scholar
  98. Nuesch H (1987) Metamorphose bei Insekten. Direkte und indirekte Entwicklung bei Apterygoten und Exopterygoten. Zool Jb Anat 115:453–487Google Scholar
  99. Ostrin EJ, Li Y, Hoffman K, Liu J, Wang K, Zhang L, Mardon G, Chen R (2006) Genome-wide identification of direct targets of the Drosophila retinal determination protein Eyeless. Genome Res 16:466–476PubMedGoogle Scholar
  100. Paulus HF (1979) Eye structure and the monophyly of the Arthropoda. In: Gupta AP (ed) Arthropod phylogeny. Van Nostrand Reinhold Company, New York, pp 299–371Google Scholar
  101. Paulus HF (1986) Evolutionswege zum Larvalauge der Insekten—ein Modell für die Entstehung und die Ableitung der ozellären Lateralaugen der Myriapoda von Fazettenaugen. Zool Jb Syst 113:353–371Google Scholar
  102. Paulus HF (1989) Das Homologisieren in der Feinstrukturforschung: Das Bolwig-Organ der hoeheren Dipteren und seine Homologisierung mit Stemmata und Ommatidien eines urspruenglichen Facettenauges der Mandibulata. Zool Beitr 32:437–478Google Scholar
  103. Punzo C, Seimiya M, Flister S, Gehring WJ, Plaza S (2002) Differential interactions of eyeless and twin of eyeless with the sine oculis enhancer. Development 129:625–634PubMedGoogle Scholar
  104. Quiring R, Walldorf U, Kloter U, Gehring WJ (1994) Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265:785–789PubMedGoogle Scholar
  105. Ranade SS, Yang-Zhou D, Kong SW, McDonald EC, Cook TA, Pignoni F (2008) Analysis of the Otd-dependent transcriptome supports the evolutionary conservation of CRX/OTX/OTD functions in flies and vertebrates. Dev Biol 315:521–534PubMedGoogle Scholar
  106. Reinke R, Krantz DE, Yen D, Zipursky SL (1988) Chaoptin, a cell surface glycoprotein required for Drosophila photoreceptor cell morphogenesis, contains a repeat motif found in yeast and human. Cell 52:291–301PubMedGoogle Scholar
  107. Reischig T, Stengl M (2003) Ectopic transplantation of the accessory medulla restores circadian locomotor rhythms in arrhythmic cockroaches (Leucophaea maderae). J Exp Biol 206:1877–1886PubMedGoogle Scholar
  108. Rodriguez Moncalvo VG, Campos AR (2005) Genetic dissection of trophic interactions in the larval optic neuropil of Drosophila melanogaster. Dev Biol 286:549–558PubMedGoogle Scholar
  109. Sawin ME, Sokolowski MB, Campos AR (1995) Characterization and genetic analysis of Drosophila melanogaster photobehavior during larval development. J Neurogenet 10:119–135Google Scholar
  110. Schmucker D, Taubert H, Jackle H (1992) Formation of the Drosophila larval photoreceptor organ and its neuronal differentiation require continuous Kruppel gene activity. Neuron 9:1025–1039PubMedGoogle Scholar
  111. Schmucker D, Su AL, Beermann A, Jackle H, Jay DG (1994) Chromophore-assisted laser inactivation of patched protein switches cell fate in the larval visual system of Drosophila. Proc Natl Acad Sci U S A 91:2664–2668PubMedGoogle Scholar
  112. Schmucker D, Jackle H, Gaul U (1997) Genetic analysis of the larval optic nerve projection in Drosophila. Development 124:937–948PubMedGoogle Scholar
  113. Schmucker D, Vorbruggen G, Yeghiayan P, Fan HQ, Jackle H, Gaul U (2000) The Drosophila gene abstrakt, required for visual system development, encodes a putative RNA helicase of the DEAD box protein family. Mech Dev 91:189–196PubMedGoogle Scholar
  114. Serikaku MA, O’Tousa JE (1994) Sine oculis is a homeobox gene required for Drosophila visual system development. Genetics 138:1137–1150PubMedGoogle Scholar
  115. Sokoloff A (1972) The biology of Tribolium. Clarendon Press, OxfordGoogle Scholar
  116. Sprecher SG, Desplan C (2008) Switch of rhodopsin expression in terminally differentiated Drosophila sensory neurons. Nature 454:533–537PubMedGoogle Scholar
  117. Sprecher SG, Pichaud F, Desplan C (2007) Adult and larval photoreceptors use different mechanisms to specify the same Rhodopsin fates. Genes Dev 21:2182–2195PubMedGoogle Scholar
  118. Sprecher SG, Cardona A, Hartenstein V (2011) The Drosophila larval visual system: high-resolution analysis of a simple visual neuropil. Dev Biol 358:33–43PubMedGoogle Scholar
  119. Steiner P (1930) Studien an Panorpa communis. I. Zur Biologie von Panorpa communis L. Z Morphol Oekol Tiere 17:1–25Google Scholar
  120. Steller H, Fischbach KF, Rubin GM (1987) Disconnected: a locus required for neuronal pathway formation in the visual system of Drosophila. Cell 50:1139–1153PubMedGoogle Scholar
  121. Strauß J, Zhang Q, Verleyen P, Huybrechts J, Neupert S, Predel R, Pauwels K, Dircksen H (2011) Pigment-dispersing hormone in Daphnia interneurons, one type homologous to insect clock neurons displaying circadian rhythmicity. CMLS Cell Mol Life Sci 68:3403–3423Google Scholar
  122. Suzuki T, Saigo K (2000) Transcriptional regulation of atonal required for Drosophila larval eye development by concerted action of eyes absent, sine oculis and hedgehog signaling independent of fused kinase and cubitus interruptus. Development 127:1531–1540PubMedGoogle Scholar
  123. Tahayato A, Sonneville R, Pichaud F, Wernet MF, Papatsenko D, Beaufils P, Cook T, Desplan C (2003) Otd/Crx, a dual regulator for the specification of ommatidia subtypes in the Drosophila retina. Dev Cell 5:391–402PubMedGoogle Scholar
  124. Tix S, Bate M, Technau GM (1989a) Pre-existing neuronal pathways in the leg imaginal disks of Drosophila. Development 107:855–862Google Scholar
  125. Tix S, Minden JS, Technau GM (1989b) Pre-existing neuronal pathways in the developing optic lobes of Drosophila. Development 105:739–746Google Scholar
  126. Truman JW, Riddiford LM (2002) Endocrine insights into the evolution of metamorphosis in insects. Annu Rev Entomol 47:467–500PubMedGoogle Scholar
  127. Vafopoulou X, Steel CGH (2012) Metamorphosis of a clock: remodeling of the circadian timing system in the brain of Rhodnius prolixus (Hemiptera) during larval-adult development. J Comp Neurol 520:1146–1164PubMedGoogle Scholar
  128. Van Vactor D Jr, Krantz DE, Reinke R, Zipursky SL (1988) Analysis of mutants in chaoptin, a photoreceptor cell-specific glycoprotein in Drosophila, reveals its role in cellular morphogenesis. Cell 52:281–290PubMedGoogle Scholar
  129. Vandendries ER, Johnson D, Reinke R (1996) orthodenticle is required for photoreceptor cell development in the Drosophila eye. Dev Biol 173:243–255PubMedGoogle Scholar
  130. Veleri S, Rieger D, Helfrich-Förster C, Stanewsky R (2007) Hofbauer-Buchner eyelet affects circadian photosensitivity and coordinates TIM and PER expression in Drosophila clock neurons. J Biol Rhythms 22:29–42PubMedGoogle Scholar
  131. Wiegmann BM, Trautwein MD, Kim JW, Cassel BK, Bertone MA, Winterton SL, Yeates DK (2009) Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biol 7:34PubMedGoogle Scholar
  132. Wiegmann BM, Trautwein MD, Winkler IS, Barrab NW, Kima J-W, Lambkin C, Bertone MA, Cassela BK, Peterson KJ, Wheeler BJ, Pape T, Sinclair BJ, Skevington JH, Blagoderovir V, Caravas J, Kutty S, Borkent A, Schmidt-Ott U, Kampmeier GE, Thompson FC, Grimaldi DA, Beckenbach AT, Courtney GW, Friedrich M, Meier R, Yeates DK (2011) Episodic radiations in the fly tree of life. Proc Natl Acad Sci U S A 108:5690–5695PubMedGoogle Scholar
  133. Xie B, Charlton-Perkins M, McDonald EC, Gebelein B, Cook T (2007) Senseless functions as a molecular switch for color photoreceptor differentiation in Drosophila. Development 134:4243–4253PubMedGoogle Scholar
  134. Xu C, Kauffmann RC, Zhang J, Kladny S, Carthew RS (2000) Overlapping activators and repressors delimit transcriptional response to receptor tyrosine kinase signals in the Drosophila eye. Cell 103:87–97.Google Scholar
  135. Yang X, Weber M, ZarinKamar N, Wigand B, Posnien G, Friedrich R, Beutel R, Damen W, Bucher G, Klingler M, Friedrich M (2009a) Probing the Drosophila retinal determination gene network in Tribolium (II): the Pax6 genes eyeless and twin of eyeless. Dev Biol 333:215–227Google Scholar
  136. Yasuyama K, Meinertzhagen IA (1999) Extraretinal photoreceptors at the compound eye’s posterior margin in Drosophila melanogaster. J Comp Neurol 412:193–202PubMedGoogle Scholar
  137. Younossi-Hartenstein A, Tepass U, Hartenstein V 1993. Embryonic origin of the imaginal discs of the head of Drosophila melanogaster. Roux's Arch Dev Biol 203:60–73Google Scholar
  138. Zelhof AC, Hardy RW, Becker A, Zuker CS (2006) Transforming the architecture of compound eyes. Nature 443:696–699PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Biological SciencesWayne State UniversityDetroitUSA
  2. 2.Department of Anatomy and Cell Biology, School of MedicineWayne State UniversityDetroitUSA

Personalised recommendations