Skip to main content

Analysis of Hepatic Transport Proteins

  • Chapter
  • First Online:
Transporters in Drug Development

Abstract

The liver is the major organ responsible for the elimination of endogenous and exogenous compounds via metabolism and/or excretion. Hepatocytes, the predominant cell type in the liver, are polarized cells with discrete basolateral and apical membranes. In this chapter, localization and function of hepatic transport proteins responsible for hepatobiliary drug disposition in humans are introduced. Hepatic transport proteins on the basolateral membrane mediate influx of compounds from sinusoidal blood into hepatocytes (i.e., NTCP, OATPs, OATs, OCTs) or efflux from hepatocytes back to sinusoidal blood (i.e., MRP3-6, OSTα/β). Canalicular transport proteins such as BSEP, MDR3, P-gp, BCRP, MRP2, and MATE1 are responsible for biliary excretion of compounds. Furthermore, in vitro (i.e., membrane vesicles, transfected cell systems, hepatocytes, isolated perfused liver) and in vivo (i.e., biliary excretion studies, hepatobiliary imaging techniques) model systems and methods that are used to investigate hepatic transport proteins are discussed, and their applications, advantages, and disadvantages are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

99mTc-HIDA:

99mTc-N(2,6-dimethylphenyl carbamoylmethyl) iminodiacetic acid

ABC:

ATP-binding cassette

AMP:

Adenosine monophosphate

ATP:

Adenosine triphosphate

AUC:

Area under the concentration–time curve

BCRP:

Breast cancer resistance protein

bLPM:

Basolateral liver plasma membrane

BSEP:

Bile salt export pump

BSP:

Bromosulfophthalein

CF-1 mice:

Mdr1a-deficient mice

cLPM:

Canalicular liver plasma membrane

CYP450:

Cytochrome P450

DDI:

Drug–drug interaction

DHEAS:

Dehydroepiandrosterone sulfate

DILI:

Drug-induced liver injury

DJS:

Dubin–Johnson syndrome

E1S:

Estrone 3-sulfate

E217G:

Estradiol-17β-D-glucuronide

EHBR:

Eisai-hyperbilirubinemic Sprague–Dawley rats

FXR:

Farnesoid X receptor

Gd-BOPTA:

Gadobenate dimeglumine

Gd-EOB-DPTA:

Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid

HBSS:

Hanks-balanced salt solution

HCC:

Hepatocellular carcinoma

HEK cells:

Human embryonic kidney cells

HMG-CoA:

3-Hydroxy-3-methyl-glutaryl coenzyme A

HPLC:

High-performance liquid chromatography

IPL:

Isolated perfused liver

iPS cells:

Inducible pluripotent stem cells

K m :

Michaelis–Menten constant

LC/MS:

Liquid chromatography mass spectrometry

LLC-PK1 cells:

Porcine kidney epithelial cells

MATE:

Multidrug and toxin extrusion

MDCK cells:

Madin–Darby canine kidney cells

MDR:

Multidrug resistance

MRI:

Magnetic-resonance imaging

MRP:

Multidrug resistance-associated protein

NCE:

New chemical entity

NTCP:

Sodium taurocholate cotransporting polypeptide (human)

Ntcp:

Sodium taurocholate cotransporting polypeptide (other species than human)

OAT:

Organic anion transporter

OATP:

Organic anion transporting polypeptide

OST:

Organic solute transporter

PBC:

Primary biliary cirrhosis

PET:

Positron emission tomography

PFIC2:

Progressive familial intrahepatic cholestasis type 2

PFIC3:

Progressive familial intrahepatic cholestasis type 3

Pgp:

P-glycoprotein

RNA:

Ribonucleic acid

RNAi:

RNA interference

SCH:

Sandwich-cultured hepatocytes

SD rat:

Sprague–Dawley rat

shRNA:

Short hairpin RNA

siRNA:

Small interfering RNA

SLC:

Solute carrier

SLCO:

Solute carrier organic anion

SPECT:

Single-photon emission computed tomography

TR rat:

Mrp2-deficient Wistar rat

UGT:

Uridine diphosphate glucuronosyl transferase

V max :

Maximal transport velocity

References

  • Abe K et al (2008) In vitro biliary clearance of angiotensin II receptor blockers and 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors in sandwich-cultured rat hepatocytes: comparison with in vivo biliary clearance. J Pharmacol Exp Ther 326(3):983–990

    CAS  PubMed Central  PubMed  Google Scholar 

  • Abe K, Bridges AS, Brouwer KLR (2009) Use of sandwich-cultured human hepatocytes to predict biliary clearance of angiotensin II receptor blockers and HMG-CoA reductase inhibitors. Drug Metab Dispos 37(3):447–452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barnes SN et al (2007) Induction of hepatobiliary efflux transporters in acetaminophen-induced acute liver failure cases. Drug Metab Dispos 35(10):1963–1969

    CAS  PubMed  Google Scholar 

  • Bi YA, Kazolias D, Duignan DB (2006) Use of cryopreserved human hepatocytes in sandwich culture to measure hepatobiliary transport. Drug Metab Dispos 34(9):1658–1665

    CAS  PubMed  Google Scholar 

  • Blitzer BL, Donovan CB (1984) A new method for the rapid isolation of basolateral plasma membrane vesicles from rat liver. Characterization, validation, and bile acid transport studies. J Biol Chem 259(14):9295–9301

    CAS  PubMed  Google Scholar 

  • Bourdet DL, Pritchard JB, Thakker DR (2005) Differential substrate and inhibitory activities of ranitidine and famotidine toward human organic cation transporter 1 (hOCT1; SLC22A1), hOCT2 (SLC22A2), and hOCT3 (SLC22A3). J Pharmacol Exp Ther 315(3):1288–1297

    CAS  PubMed  Google Scholar 

  • Bow DA, Perry JL, Miller DS, Pritchard JB, Brouwer KLR (2008) Localization of P-gp (Abcb1) and Mrp2 (Abcc2) in freshly isolated rat hepatocytes. Drug Metab Dispos 36(1):198–202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boyer JL (1997) Isolated hepatocyte couplets and bile duct units—novel preparations for the in vitro study of bile secretory function. Cell Biol Toxicol 13(4–5):289–300

    CAS  PubMed  Google Scholar 

  • Boyer JL et al (2006) Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. Am J Physiol Gastrointest Liver Physiol 290(6):G1124–G1130

    CAS  PubMed  Google Scholar 

  • Briz O et al (2006) OATP8/1B3-mediated cotransport of bile acids and glutathione: an export pathway for organic anions from hepatocytes? J Biol Chem 281(41):30326–30335

    CAS  PubMed  Google Scholar 

  • Brune K, Nuernberg B, Schneider HT (1993) Biliary elimination of aspirin after oral and intravenous administration in patients. Agents Actions Suppl 44:51–57

    CAS  PubMed  Google Scholar 

  • Campbell SD, de Morais SM, Xu JJ (2004) Inhibition of human organic anion transporting polypeptide OATP 1B1 as a mechanism of drug-induced hyperbilirubinemia. Chem Biol Interact 150(2):179–187

    CAS  PubMed  Google Scholar 

  • Coleman R et al (1995) Hepatobiliary function and toxicity in vitro using isolated hepatocyte couplets. Gen Pharmacol 26(7):1445–1453

    CAS  PubMed  Google Scholar 

  • Cui Y, Konig J, Keppler D (2001) Vectorial transport by double-transfected cells expressing the human uptake transporter SLC21A8 and the apical export pump ABCC2. Mol Pharmacol 60(5):934–943

    CAS  PubMed  Google Scholar 

  • Cvetkovic M et al (1999) OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos 27(8):866–871

    CAS  PubMed  Google Scholar 

  • De Bruyn T et al (2011) Determination of OATP-, NTCP- and OCT-mediated substrate uptake activities in individual and pooled batches of cryopreserved human hepatocytes. Eur J Pharm Sci 43(4):297–307

    PubMed  Google Scholar 

  • Fahrmayr C et al (2012) Identification of drugs and drug metabolites as substrates of MRP2 using triple-transfected MDCK-OATP1B1-UGT1A1-MRP2 cells. Br J Pharmacol 165(6):1836–1847

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer WJ et al (2005) Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol Appl Pharmacol 203(3):257–263

    CAS  PubMed  Google Scholar 

  • Floren LC et al (1997) Tacrolimus oral bioavailability doubles with coadministration of ketoconazole. Clin Pharmacol Ther 62(1):41–49

    CAS  PubMed  Google Scholar 

  • Fromm MF et al (1999) Inhibition of P-glycoprotein-mediated drug transport: a unifying mechanism to explain the interaction between digoxin and quinidine [see comments]. Circulation 99(4):552–557

    CAS  PubMed  Google Scholar 

  • Fukuda H et al (2008) Effect of plasma protein binding on in vitro-in vivo correlation of biliary excretion of drugs evaluated by sandwich-cultured rat hepatocytes. Drug Metab Dispos 36(7):1275–1282

    CAS  PubMed  Google Scholar 

  • Galatola G et al (1991) Direct measurement of first-pass ileal clearance of a bile acid in humans. Gastroenterology 100(4):1100–1105

    CAS  PubMed  Google Scholar 

  • Gerloff T et al (1999) Differential expression of basolateral and canalicular organic anion transporters during regeneration of rat liver. Gastroenterology 117(6):1408–1415

    CAS  PubMed  Google Scholar 

  • Germann UA et al (1990) Expression of the human multidrug transporter in insect cells by a recombinant baculovirus. Biochemistry 29(9):2295–2303

    CAS  PubMed  Google Scholar 

  • Ghibellini G et al (2004) A novel method for the determination of biliary clearance in humans. AAPS J 6(4):e33

    PubMed  Google Scholar 

  • Ghibellini G et al (2006) Determination of the biliary excretion of piperacillin in humans using a novel method. Br J Clin Pharmacol 62(3):304–308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghibellini G et al (2007) In vitro-in vivo correlation of hepatobiliary drug clearance in humans. Clin Pharmacol Ther 81(3):406–413

    CAS  PubMed  Google Scholar 

  • Gomes CM et al (2009) P-glycoprotein versus MRP1 on transport kinetics of cationic lipophilic substrates: a comparative study using [99mTc]sestamibi and [99mTc]tetrofosmin. Cancer Biother Radiopharm 24(2):215–227

    CAS  PubMed  Google Scholar 

  • Gorboulev V et al (1997) Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 16(7):871–881

    CAS  PubMed  Google Scholar 

  • Grube M et al (2006) Modification of OATP2B1-mediated transport by steroid hormones. Mol Pharmacol 70(5):1735–1741

    CAS  PubMed  Google Scholar 

  • Grundemann D et al (1998) Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter. Nat Neurosci 1(5):349–351

    CAS  PubMed  Google Scholar 

  • Grundemann D et al (1999) Selective substrates for non-neuronal monoamine transporters. Mol Pharmacol 56(1):1–10

    CAS  PubMed  Google Scholar 

  • Grundemann D et al (2003) Agmatine is efficiently transported by non-neuronal monoamine transporters extraneuronal monoamine transporter (EMT) and organic cation transporter 2 (OCT2). J Pharmacol Exp Ther 304(2):810–817

    CAS  PubMed  Google Scholar 

  • Guhlmann A et al (1995) Noninvasive assessment of hepatobiliary and renal elimination of cysteinyl leukotrienes by positron emission tomography. Hepatology 21(6):1568–1575

    CAS  PubMed  Google Scholar 

  • Gundala S et al (2004) The hepatocellular bile acid transporter Ntcp facilitates uptake of the lethal mushroom toxin alpha-amanitin. Arch Toxicol 78(2):68–73

    CAS  PubMed  Google Scholar 

  • Hagenbuch B (2010) Drug uptake systems in liver and kidney: a historic perspective. Clin Pharmacol Ther 87(1):39–47

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayer-Zillgen M, Bruss M, Bonisch H (2002) Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol 136(6):829–836

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hendrikse NH et al (2004) In vivo imaging of hepatobiliary transport function mediated by multidrug resistance associated protein and P-glycoprotein. Cancer Chemother Pharmacol 54(2):131–138

    CAS  PubMed  Google Scholar 

  • Hirano M et al (2004) Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J Pharmacol Exp Ther 311(1):139–146

    CAS  PubMed  Google Scholar 

  • Hirano M et al (2005) Bile salt export pump (BSEP/ABCB11) can transport a nonbile acid substrate, pravastatin. J Pharmacol Exp Ther 314(2):876–882

    CAS  PubMed  Google Scholar 

  • Hirohashi T, Suzuki H, Sugiyama Y (1999) Characterization of the transport properties of cloned rat multidrug resistance-associated protein 3 (MRP3). J Biol Chem 274(21):15181–15185

    CAS  PubMed  Google Scholar 

  • Hirouchi M et al (2009) Construction of triple-transfected cells [organic anion-transporting polypeptide (OATP) 1B1/multidrug resistance-associated protein (MRP) 2/MRP3 and OATP1B1/MRP2/MRP4] for analysis of the sinusoidal function of MRP3 and MRP4. Drug Metab Dispos 37(10):2103–2111

    CAS  PubMed  Google Scholar 

  • Ho RH et al (2006) Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 130(6):1793–1806

    CAS  PubMed  Google Scholar 

  • Hoffmaster KA et al (2004a) P-glycoprotein expression, localization, and function in sandwich-cultured primary rat and human hepatocytes: relevance to the hepatobiliary disposition of a model opioid peptide. Pharm Res 21(7):1294–1302

    CAS  PubMed  Google Scholar 

  • Hoffmaster KA et al (2004) Hepatobiliary disposition of the metabolically stable opioid peptide [D-Pen2, D-Pen5]-enkephalin (DPDPE): pharmacokinetic consequences of the interplay between multiple transport systems. J Pharmacol Exp Ther 311(3):1203–1210

    CAS  PubMed  Google Scholar 

  • Houle R et al (2003) Retention of transporter activities in cryopreserved, isolated rat hepatocytes. Drug Metab Dispos 31(4):447–451

    CAS  PubMed  Google Scholar 

  • Ishizuka H et al (1999) Species differences in the transport activity for organic anions across the bile canalicular membrane. J Pharmacol Exp Ther 290(3):1324–1330

    CAS  PubMed  Google Scholar 

  • Ismair MG et al (2001) Hepatic uptake of cholecystokinin octapeptide by organic anion-transporting polypeptides OATP4 and OATP8 of rat and human liver. Gastroenterology 121(5):1185–1190

    CAS  PubMed  Google Scholar 

  • Janvilisri T et al (2003) Sterol transport by the human breast cancer resistance protein (ABCG2) expressed in Lactococcus lactis. J Biol Chem 278(23):20645–20651

    CAS  PubMed  Google Scholar 

  • Jedlitschky G et al (1997) ATP-dependent transport of bilirubin glucuronides by the multidrug resistance protein MRP1 and its hepatocyte canalicular isoform MRP2. Biochem J 327(pt 1):305–310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455(1):152–162

    CAS  PubMed  Google Scholar 

  • Kajosaari LI et al (2005) Cyclosporine markedly raises the plasma concentrations of repaglinide. Clin Pharmacol Ther 78(4):388–399

    CAS  PubMed  Google Scholar 

  • Kameyama Y et al (2005) Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics 15(7):513–522

    CAS  PubMed  Google Scholar 

  • Kawabata S et al (2001) Breast cancer resistance protein directly confers SN-38 resistance of lung cancer cells. Biochem Biophys Res Commun 280(5):1216–1223

    CAS  PubMed  Google Scholar 

  • Kawabe T et al (1999) Enhanced transport of anticancer agents and leukotriene C4 by the human canalicular multispecific organic anion transporter (cMOAT/MRP2). FEBS Lett 456(2):327–331

    CAS  PubMed  Google Scholar 

  • Keppler D (2011) Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb Exp Pharmacol (201):299–323

    Google Scholar 

  • Khamdang S et al (2002) Interactions of human organic anion transporters and human organic cation transporters with nonsteroidal anti-inflammatory drugs. J Pharmacol Exp Ther 303(2):534–539

    CAS  PubMed  Google Scholar 

  • Kim RB et al (1998) The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 101(2):289–294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi Y et al (2005) Transport mechanism and substrate specificity of human organic anion transporter 2 (hOat2 [SLC22A7]). J Pharm Pharmacol 57(5):573–578

    CAS  PubMed  Google Scholar 

  • Köck K, Brouwer KLR (2012) A perspective on efflux transport proteins in the liver. Clin Pharmacol Ther 92(5):599–612

    PubMed Central  PubMed  Google Scholar 

  • Koike K et al (1997) A canalicular multispecific organic anion transporter (cMOAT) antisense cDNA enhances drug sensitivity in human hepatic cancer cells. Cancer Res 57(24):5475–5479

    CAS  PubMed  Google Scholar 

  • Konig J et al (1999) Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology 29(4):1156–1163

    CAS  PubMed  Google Scholar 

  • Kopplow K et al (2005) Human hepatobiliary transport of organic anions analyzed by quadruple-transfected cells. Mol Pharmacol 68(4):1031–1038

    CAS  PubMed  Google Scholar 

  • Kouzuki H et al (1999) Contribution of organic anion transporting polypeptide to uptake of its possible substrates into rat hepatocytes. J Pharmacol Exp Ther 288(2):627–634

    CAS  PubMed  Google Scholar 

  • Kullak-Ublick GA et al (2000) Hepatic transport of bile salts. Semin Liver Dis 20(3):273–292

    CAS  PubMed  Google Scholar 

  • Kullak-Ublick GA et al (2001) Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology 120(2):525–533

    CAS  PubMed  Google Scholar 

  • Kullak-Ublick GA, Stieger B, Meier PJ (2004) Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 126(1):322–342

    CAS  PubMed  Google Scholar 

  • Lau YY et al (2002) Development of a novel in vitro model to predict hepatic clearance using fresh, cryopreserved, and sandwich-cultured hepatocytes. Drug Metab Dispos 30(12):1446–1454

    CAS  PubMed  Google Scholar 

  • Le Vee M et al (2006) Functional expression of sinusoidal and canalicular hepatic drug transporters in the differentiated human hepatoma HepaRG cell line. Eur J Pharm Sci 28(1–2):109–117

    PubMed  Google Scholar 

  • Leonhardt M et al (2010) Hepatic uptake of the magnetic resonance imaging contrast agent Gd-EOB-DTPA: role of human organic anion transporters. Drug Metab Dispos 38(7):1024–1028

    PubMed  Google Scholar 

  • Li L, Meier PJ, Ballatori N (2000) Oatp2 mediates bidirectional organic solute transport: a role for intracellular glutathione. Mol Pharmacol 58(2):335–340

    CAS  PubMed  Google Scholar 

  • Li N et al (2010) Improved extrapolation of hepatobiliary clearance from in vitro sandwich cultured rat hepatocytes through absolute quantification of hepatobiliary transporters. Mol Pharm 7(3):630–641

    CAS  PubMed  Google Scholar 

  • Liao M et al (2010) Inhibition of hepatic organic anion-transporting polypeptide by RNA interference in sandwich-cultured human hepatocytes: an in vitro model to assess transporter-mediated drug-drug interactions. Drug Metab Dispos 38(9):1612–1622

    CAS  PubMed  Google Scholar 

  • Link E et al (2008) SLCO1B1 variants and statin-induced myopathy—a genomewide study. N Engl J Med 359(8):789–799

    CAS  PubMed  Google Scholar 

  • Liu X et al (1999a) Biliary excretion in primary rat hepatocytes cultured in a collagen-sandwich configuration. Am J Physiol 277(1 pt 1):G12–G21

    CAS  PubMed  Google Scholar 

  • Liu X et al (1999b) Use of Ca2+ modulation to evaluate biliary excretion in sandwich-cultured rat hepatocytes. J Pharmacol Exp Ther 289(3):1592–1599

    CAS  PubMed  Google Scholar 

  • Liu X et al (1999c) Correlation of biliary excretion in sandwich-cultured rat hepatocytes and in vivo in rats. Drug Metab Dispos 27(6):637–644

    CAS  PubMed  Google Scholar 

  • Luker GD et al (1997) Modulation of the multidrug resistance P-glycoprotein: detection with technetium-99m-sestamibi in vivo. J Nucl Med 38(3):369–372

    CAS  PubMed  Google Scholar 

  • Maliepaard M et al (1999) Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res 59(18):4559–4563

    CAS  PubMed  Google Scholar 

  • Marie JP et al (1992) In vitro effect of P-glycoprotein (P-gp) modulators on drug sensitivity of leukemic progenitors (CFU-L) in acute myelogenous leukemia (AML). Exp Hematol 20(5):565–568

    CAS  PubMed  Google Scholar 

  • Matsushima S et al (2005) Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther 314(3):1059–1067

    CAS  PubMed  Google Scholar 

  • Meier PJ et al (1984) Structural and functional polarity of canalicular and basolateral plasma membrane vesicles isolated in high yield from rat liver. J Cell Biol 98(3):991–1000

    CAS  PubMed  Google Scholar 

  • Meier-Abt F, Faulstich H, Hagenbuch B (2004) Identification of phalloidin uptake systems of rat and human liver. Biochim Biophys Acta 1664(1):64–69

    CAS  PubMed  Google Scholar 

  • Milkiewicz P et al (2002) Pathobiology and experimental therapeutics in hepatocellular cholestasis: lessons from the hepatocyte couplet model. Clin Sci (Lond) 102(6):603–614

    CAS  Google Scholar 

  • Muller J et al (2005) Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol 70(12):1851–1860

    PubMed  Google Scholar 

  • Nakakariya M et al (2012) In vivo biliary clearance should be predicted by intrinsic biliary clearance in sandwich-cultured hepatocytes. Drug Metab Dispos 40(3):602–609

    CAS  PubMed  Google Scholar 

  • Narita M et al (2009) Expression of OATP1B3 determines uptake of Gd-EOB-DTPA in hepatocellular carcinoma. J Gastroenterol 44(7):793–798

    CAS  PubMed  Google Scholar 

  • Niemi M et al (2005) Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin Pharmacol Ther 77(6):468–478

    CAS  PubMed  Google Scholar 

  • Northfield TC, Hofmann AF (1975) Biliary lipid output during three meals and an overnight fast. I. Relationship to bile acid pool size and cholesterol saturation of bile in gallstone and control subjects. Gut 16(1):1–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nozawa T et al (2004) Involvement of organic anion transporting polypeptides in the transport of troglitazone sulfate: implications for understanding troglitazone hepatotoxicity. Drug Metab Dispos 32(3):291–294

    PubMed  Google Scholar 

  • Nozawa T et al (2005) Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide polymorphisms. Drug Metab Dispos 33(3):434–439

    CAS  PubMed  Google Scholar 

  • Oude Elferink RP, Paulusma CC (2007) Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Pflugers Arch 453(5):601–610

    CAS  PubMed  Google Scholar 

  • Ozvegy C et al (2001) Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells. Biochem Biophys Res Commun 285(1):111–117

    CAS  PubMed  Google Scholar 

  • Pal A et al (2007) Cholesterol potentiates ABCG2 activity in a heterologous expression system: improved in vitro model to study function of human ABCG2. J Pharmacol Exp Ther 321(3):1085–1094

    CAS  PubMed  Google Scholar 

  • Pascolo L et al (2001) Abc protein transport of MRI contrast agents in canalicular rat liver plasma vesicles and yeast vacuoles. Biochem Biophys Res Commun 282(1):60–66

    CAS  PubMed  Google Scholar 

  • Pauli-Magnus C et al (2000) Characterization of the major metabolites of verapamil as substrates and inhibitors of P-glycoprotein. J Pharmacol Exp Ther 293(2):376–382

    CAS  PubMed  Google Scholar 

  • Payen L et al (2000) Characterization and inhibition by a wide range of xenobiotics of organic anion excretion by primary human hepatocytes. Biochem Pharmacol 60(12):1967–1975

    CAS  PubMed  Google Scholar 

  • Pfeifer ND et al (2013) Effect of ritonavir on 99mTc-mebrofenin disposition in humans: a semi-PBPK modeling and in vitro approach to predict transporter-mediated DDIs. CPT pharmacomet syst pharmacol 2:e20

    CAS  Google Scholar 

  • Polli JW et al (1999) Role of P-glycoprotein on the CNS disposition of amprenavir (141W94), an HIV protease inhibitor. Pharm Res 16(8):1206–1212

    CAS  PubMed  Google Scholar 

  • Rius M et al (2003) Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology 38(2):374–384

    CAS  PubMed  Google Scholar 

  • Rosmorduc O et al (2003) ABCB4 gene mutation-associated cholelithiasis in adults. Gastroenterology 125(2):452–459

    PubMed  Google Scholar 

  • Sampath J et al (2002) Role of MRP4 and MRP5 in biology and chemotherapy. AAPS PharmSci 4(3):E14

    CAS  PubMed  Google Scholar 

  • Sandhu P et al (2005) Hepatic uptake of the novel antifungal agent caspofungin. Drug Metab Dispos 33(5):676–682

    CAS  PubMed  Google Scholar 

  • Sasaki M et al (2002) Transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide (OATP2/SLC21A6) and multidrug resistance-associated protein 2 (MRP2/ABCC2). J Biol Chem 277(8):6497–6503

    CAS  PubMed  Google Scholar 

  • Sasaki M et al (2004) Prediction of in vivo biliary clearance from the in vitro transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II monolayer expressing both rat organic anion transporting polypeptide 4 and multidrug resistance associated protein 2. Mol Pharmacol 66(3):450–459

    CAS  PubMed  Google Scholar 

  • Satlin LM, Amin V, Wolkoff AW (1997) Organic anion transporting polypeptide mediates organic anion/HCO3- exchange. J Biol Chem 272(42):26340–26345

    CAS  PubMed  Google Scholar 

  • Schuetz JD et al (1999) MRP4: a previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med 5(9):1048–1051

    CAS  PubMed  Google Scholar 

  • Shin HJ et al (2007) Novel liver-specific organic anion transporter OAT7 that operates the exchange of sulfate conjugates for short chain fatty acid butyrate. Hepatology 45(4):1046–1055

    CAS  PubMed  Google Scholar 

  • Shitara Y et al (2003a) Function of uptake transporters for taurocholate and estradiol 17beta-D-glucuronide in cryopreserved human hepatocytes. Drug Metab Pharmacokinet 18(1):33–41

    CAS  PubMed  Google Scholar 

  • Shitara Y et al (2003b) Inhibition of transporter-mediated hepatic uptake as a mechanism for drug-drug interaction between cerivastatin and cyclosporin A. J Pharmacol Exp Ther 304(2):610–616

    CAS  PubMed  Google Scholar 

  • Smith AJ et al (2000) MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping. J Biol Chem 275(31):23530–23539

    CAS  PubMed  Google Scholar 

  • Soldner A et al (1999) Grapefruit juice activates P-glycoprotein-mediated drug transport. Pharm Res 16(4):478–485

    CAS  PubMed  Google Scholar 

  • Song Z et al (2009) Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res 19(11):1233–1242

    PubMed  Google Scholar 

  • Soroka CJ, Ballatori N, Boyer JL (2010) Organic solute transporter, OSTalpha-OSTbeta: its role in bile acid transport and cholestasis. Semin Liver Dis 30(2):178–185

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spahn-Langguth H et al (1998) P-glycoprotein transporters and the gastrointestinal tract: evaluation of the potential in vivo relevance of in vitro data employing talinolol as model compound. Int J Clin Pharmacol Ther 36(1):16–24

    CAS  PubMed  Google Scholar 

  • Stadalnik RC et al (1981) Clinical experience with 99mTc-disofenin as a cholescintigraphic agent. Radiology 140(3):797–800

    CAS  PubMed  Google Scholar 

  • Stieger B (2011) The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb Exp Pharmacol (201):205–259

    Google Scholar 

  • Stieger B et al (2000) Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology 118(2):422–430

    CAS  PubMed  Google Scholar 

  • Sun W et al (2001) Isolation of a family of organic anion transporters from human liver and kidney. Biochem Biophys Res Commun 283(2):417–422

    CAS  PubMed  Google Scholar 

  • Swift B, Pfeifer ND, Brouwer KLR (2010) Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev 42(3):446–471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tahara H et al (2005) A species difference in the transport activities of H2 receptor antagonists by rat and human renal organic anion and cation transporters. J Pharmacol Exp Ther 315(1):337–345

    CAS  PubMed  Google Scholar 

  • Takashima T et al (2010) Positron emission tomography studies using (15R)-16-m-[11C]tolyl-17,18,19,20-tetranorisocarbacyclin methyl ester for the evaluation of hepatobiliary transport. J Pharmacol Exp Ther 335(2):314–323

    CAS  PubMed  Google Scholar 

  • Takeda M et al (2002) Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther 300(3):918–924

    CAS  PubMed  Google Scholar 

  • Tamai I et al (2000) Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem Biophys Res Commun 273(1):251–260

    CAS  PubMed  Google Scholar 

  • Thomas J et al (2004) Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104(12):3739–3745

    CAS  PubMed  Google Scholar 

  • Tian X et al (2004) Modulation of multidrug resistance-associated protein 2 (Mrp2) and Mrp3 expression and function with small interfering RNA in sandwich-cultured rat hepatocytes. Mol Pharmacol 66(4):1004–1010

    CAS  PubMed  Google Scholar 

  • Tsuboyama T et al (2010) Hepatocellular carcinoma: hepatocyte-selective enhancement at gadoxetic acid-enhanced MR imaging—correlation with expression of sinusoidal and canalicular transporters and bile accumulation. Radiology 255(3):824–833

    PubMed  Google Scholar 

  • Tsujii H et al (1999) Exon-intron organization of the human multidrug-resistance protein 2 (MRP2) gene mutated in Dubin-Johnson syndrome. Gastroenterology 117(3):653–660

    CAS  PubMed  Google Scholar 

  • Ueda K et al (1992) Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem 267(34):24248–24252

    CAS  PubMed  Google Scholar 

  • van Montfoort JE et al (2001) Comparison of “type I” and “type II” organic cation transport by organic cation transporters and organic anion-transporting polypeptides. J Pharmacol Exp Ther 298(1):110–115

    PubMed  Google Scholar 

  • Verho M et al (1995) Pharmacokinetics, metabolism and biliary and urinary excretion of oral ramipril in man. Curr Med Res Opin 13(5):264–273

    CAS  PubMed  Google Scholar 

  • Wagner M, Zollner G, Trauner M (2009) New molecular insights into the mechanisms of cholestasis. J Hepatol 51(3):565–580

    CAS  PubMed  Google Scholar 

  • Wang R, Sheps JA, Ling V (2011) ABC transporters, bile acids, and inflammatory stress in liver cancer. Curr Pharm Biotechnol 12(4):636–646

    CAS  PubMed  Google Scholar 

  • Wu X et al (2000) Structure, function, and regional distribution of the organic cation transporter OCT3 in the kidney. Am J Physiol Renal Physiol 279(3):F449–F458

    CAS  PubMed  Google Scholar 

  • Xiong H et al (2000) Altered hepatobiliary disposition of acetaminophen glucuronide in isolated perfused livers from multidrug resistance-associated protein 2-deficient TR(−) rats. J Pharmacol Exp Ther 295(2):512–518

    CAS  PubMed  Google Scholar 

  • Yamaguchi H et al (2000) Secretory mechanisms of grepafloxacin and levofloxacin in the human intestinal cell line caco-2. J Pharmacol Exp Ther 295(1):360–366

    CAS  PubMed  Google Scholar 

  • Yue W, Abe K, Brouwer KLR (2009) Knocking down breast cancer resistance protein (Bcrp) by adenoviral vector-mediated RNA interference (RNAi) in sandwich-cultured rat hepatocytes: a novel tool to assess the contribution of Bcrp to drug biliary excretion. Mol Pharm 6(1):134–143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zamek-Gliszczynski MJ et al (2005) Multiple mechanisms are involved in the biliary excretion of acetaminophen sulfate in the rat: role of Mrp2 and Bcrp1. Drug Metab Dispos 33(8):1158–1165

    CAS  PubMed  Google Scholar 

  • Zhang L et al (1999) The interaction of n-tetraalkylammonium compounds with a human organic cation transporter, hOCT1. J Pharmacol Exp Ther 288(3):1192–1198

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the helpful advice of Drs. Hoffmaster and Swift in the preparation of this chapter. This work was supported, in part, by a grant from the National Institute of General Medical Sciences of the National Institutes of Health under award number R01 GM41935 [K.L.R.B] and the German Research Foundation under award number Ko4186/1-1 [K.K]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim L. R. Brouwer Pharm.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yang, K., Köck, K., Brouwer, K.L.R. (2013). Analysis of Hepatic Transport Proteins. In: Sugiyama, Y., Steffansen, B. (eds) Transporters in Drug Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8229-1_9

Download citation

Publish with us

Policies and ethics