Advertisement

Altitudinal Distribution and Ranging Patterns of Pygmy Tarsiers (Tarsius pumilus)

  • Nanda B. Grow
Chapter
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)

Abstract

Pygmy tarsiers (Tarsius pumilus) of central Sulawesi, Indonesia are the only species of tarsier known to live exclusively at high altitudes. This paper examines how the ranging patterns and altitudinal distribution of high-altitude pygmy tarsiers compare to those of lowland Sulawesian tarsier species, within an elevational gradient in Lore Lindu National Park. This study a) assesses the altitudinal range of pygmy tarsiers and determines the degree of overlap with lowland tarsiers; b) describes the ranging patterns of pygmy tarsiers; and c) compares the home range sizes of pygmy tarsiers to lowland tarsiers. Given that species ranges should increase as elevation increases, I hypothesized that pygmy tarsiers would have a larger altitudinal range than lowland tarsiers. Further, given that tarsier food resources decline at higher altitudes, I hypothesized that pygmy tarsiers would have relatively large home ranges. Results indicate that pygmy tarsiers within the study area are allopatrically separated from lowland tarsier species. Pygmy tarsiers were found at 2000-2300 m and do not occupy a wider elevational range than lowland tarsiers, contrary to Rapoport’s rule. Pygmy tarsier home ranges are comparable to or relatively larger than those of lowland tarsiers, although interpretation of these results is limited by a small sample size. The average home range size for the observed pygmy tarsiers was 2.0 ha, and the average nightly path length was 365.36 m. While pygmy tarsier home ranges may be larger than lowland species, nightly path length is shorter, indicating that the tarsiers do not utilize a large proportion of their home range on a nightly basis. The relatively small nightly path length of pygmy tarsiers is unexpected, given that nightly travel distances are known to increase in habitats with lower productivity. One explanation for this short nightly travel distances of pygmy tarsiers may be their biased distribution near forest edges where insects are more abundant, lessening the need to increase foraging area. A possible confounding variable for these results is seasonal change in resources, although there is no clear seasonal change in rainfall at the study site.

Keywords

Altitude Distribution Ranging Home range Pygmy tarsier Tarsius pumilus Sulawesi Indonesia 

References

  1. Altmann, J. (1974). Observational study of behavior: Sampling methods. Behaviour, 49, 227–267.PubMedCrossRefGoogle Scholar
  2. Beard, K. (1998). A new genus of Tarsiidae (Mammalia: Primates) from the middle Eocene of Shanxi Province, China, with notes on the historical biogeography0020of tarsiers. In K. C. Beard and M. R. Dawson (Eds.), Dawn of the age of mammals in Asia (Vol. 34, pp. 260–277). Pittsburgh: Bulletin of Carnegie Museum of Natural History.Google Scholar
  3. Bearder, S. K., and Martin, R. D. (1979). The social organization of a nocturnal primate revealed by radio-tracking. In C.J. Amlaner and D.W. Macdonald (Eds.), A Handbook on Biotelemetry and Radio Tracking (pp. 633-648). Oxford: Pergamon Press.Google Scholar
  4. Brandon-Jones, D., Eudey, A. A., Geissmann, T., Groves, C. P., Melnick, D. J., Morales, J. C., et al. (2004). Asian primate classification. International Journal of Primatology, 25(1), 97–164.CrossRefGoogle Scholar
  5. Burton, J., Hedges, S., & Mustari, A. (2005). The taxonomic status, distribution and conservation of the lowland anoa Bubalus depressicornis and mountain anoa Bubalus quarlesi. Mammal Review, 35(1), 25–50.CrossRefGoogle Scholar
  6. Crompton, R. H., & Andau, P. M. (1987). Ranging, activity rhythms, and sociality in free-rangingTarsius bancanus: A preliminary report. International Journal of Primatology, 8(1), 43–71.CrossRefGoogle Scholar
  7. Culmsee, H. (2011). Tree diversity and phytogeographical patterns of tropical high mountain rain forests in Central Sulawesi, Indonesia. Biodiversity and Conservation, 20(5), 1103–1123.CrossRefGoogle Scholar
  8. Culmsee, H., Leuschner, C., Moser, G., & Pitopang, R. (2010). Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. Journal of Biogeography, 37(5), 960–974.CrossRefGoogle Scholar
  9. Darwin, C. (1845). Journal of researches into the natural history and geology of the countries visited during the voyage of H.M.S. Beagle round the world, under the command of Capt. Fitz Roy, R.N. (2nd ed). London: John Murray.Google Scholar
  10. Fleagle, J., & Gilbert, C. (2006). The biogeography of primate evolution: The role of plate tectonics, climate and chance. In S. M. Lehman & J. G. Fleagle (Eds.), Primate biogeography (pp. 375–418). New York: Springer.CrossRefGoogle Scholar
  11. Fogden, M. P. L. (1974). A preliminary field study of the western tarsier, Tarsius bancanus Horsefield. In R. D. Martin, G. A. Doyle, & A. C. Walker (Eds.), Prosimian biology (pp. 151–165). Pittsburgh: University of Pittsburgh Press.Google Scholar
  12. Goodman, S. M., & Ganzhorn, J. U. (2004). Elevational ranges of lemurs in the humid forests of Madagascar. International Journal of Primatology, 25(2), 331–350.CrossRefGoogle Scholar
  13. Gorog, A., & Sinaga, M. (2008). A tarsier capture in upper montane forest on Borneo. In M. Shekelle, I. Maryanto, C. P. Groves, H. Schulze, & H. Fitch-Snyder (Eds.), Primates of the oriental night (pp. 29–33). Cibinong, Indonesia: Indonesian Institute of Sciences.Google Scholar
  14. Groves, C., & Shekelle, M. (2010). The genera and species of Tarsiidae. International Journal of Primatology, 1–12.Google Scholar
  15. Grow, N. B. (2012). Constraints on sexually selected traits in a high-altitude tarsier species, Tarsius pumilus. American Journal of Physical Anthropology, 147(S54), 156.Google Scholar
  16. Grow, N., & Gursky-Doyen, S. (2010). Preliminary data on the behavior, ecology, and morphology of pygmy tarsiers (Tarsius pumilus). International Journal of Primatology, 31(6), 1174–1191.CrossRefGoogle Scholar
  17. Grow, N. B., Gursky, S., & Duma, Y. (2013). Altitude and forest edges influence the density and distribution of pygmy tarsiers (Tarsius pumilus). American Journal of Primatology,. doi: 10.1002/ajp.22123.PubMedGoogle Scholar
  18. Grueter, C. C., Li, D., Ren, B., Xiang, Z., & Li, M. (2012). Food abundance is the main determinant of high-altitude range use in snub-nosed monkeys. International Journal of Zoology, e739419, 1–4.Google Scholar
  19. Gursky, S. (1995). Group size and composition in the spectral tarsier, Tarsius spectrum: Implications for social organization. Tropical Biodiversity, 3(1), 57–62.Google Scholar
  20. Gursky, S. (1998). Conservation status of the spectral tarsier Tarsius spectrum: Population density and home range size. Folia Primatologica, 69, 191–203.CrossRefGoogle Scholar
  21. Gursky, S. (2000). Effect of seasonality on the behavior of an insectivorous primate, Tarsius spectrum. International Journal of Primatology, 21(3), 477–495.CrossRefGoogle Scholar
  22. Haines, A., Hernández, F., Henke, S., & Bingham, R. (2006). A method for determining asymptotes of home-range area curves. Gamebird, 489–498. May 31–June 4 2006.Google Scholar
  23. Körner, C. (2007). The use of “altitude” in ecological research. Trends in Ecology and Evolution, 22(11), 569–574.PubMedCrossRefGoogle Scholar
  24. Latifah, S. (2005). Inventory and quality assessment of tropical rainforests in the Lore Lindu national park (Sulawesi, Indonesia). Göttingen: Cuvillier Verlag.Google Scholar
  25. Lehman, S., & Fleagle, J. (2006). Biogeography and primates: A review. In S. Lehman & J. Fleagle (Eds.), Primate biogeography: Progress and prospects (pp. 1–58). Chicago: Springer.CrossRefGoogle Scholar
  26. Losos, J. B., & Ricklefs, R. E. (2009). Adaptation and diversification on islands. Nature, 457(7231), 830–836.PubMedCrossRefGoogle Scholar
  27. MacKinnon, J., & MacKinnon, K. (1980). The behavior of wild spectral tarsiers. International Journal of Primatology, 1(4), 361–379.CrossRefGoogle Scholar
  28. Maryanto, I., & Yani, M. (2004). The third record of pygmy tarsier (Tarsius pumilus) from Lore Lindu national park, central Sulawesi, Indonesia. Tropical Biodiversity, 8(2), 79–85.Google Scholar
  29. McCain, C. M. (2007). Area and mammalian elevational diversity. Ecology, 88(1), 76–86.PubMedCrossRefGoogle Scholar
  30. Merker, S. (2003). Vom aussterben bedroht oder anpassungsfähig?-der koboldmaki Tarsius dianae in den regenwäldern Sulawesis. Unpublished Doctoral Dissertation, University of Göttingen, Germany.Google Scholar
  31. Merker, S. (2006). Habitat-specific ranging patterns of Dian’s tarsiers (Tarsius dianae) as revealed by radiotracking. American Journal of Primatology, 68(2), 111–125.PubMedCrossRefGoogle Scholar
  32. Merker, S. (2010). The population ecology of Dian’s Tarsier. In S. Gursky & J. Supriatna (Eds.), Indonesian primates (pp. 371–382). New York: Springer.CrossRefGoogle Scholar
  33. Merker, S., & Groves, C. (2006). Tarsius lariang: A new primate species from western central Sulawesi. International Journal of Primatology, 27(2), 465–485.CrossRefGoogle Scholar
  34. Merker, S., Yustian, I., & Mühlenberg, M. (2004). Losing ground but still doing well—Tarsius dianae in human-altered rainforests of central Sulawesi, Indonesia. In G. Gerold, M. Fremerey, & E. Guhardja (Eds.), Land use, nature conservation and the stability of rainforest margins in Southeast Asia (pp. 299–311). Heidelberg: Springer.CrossRefGoogle Scholar
  35. Merker, S., Yustian, I., & Mühlenberg, M. (2005). Responding to forest degradation: altered habitat use by Dian’s tarsier Tarsius dianae in Sulawesi, Indonesia. Oryx, 39(02), 189–195.CrossRefGoogle Scholar
  36. Merker, S., Driller, C., Perwitasari-Farajallah, D., Pamungkas, J., & Zischler, H. (2009). Elucidating geological and biological processes underlying the diversification of Sulawesi tarsiers. Proceedings of the National Academy of Sciences, 106(21), 8459.CrossRefGoogle Scholar
  37. Merker, S., Driller, C., Dahruddin, H., Sinaga, W., Perwitasari-Farajallah, D., & Shekelle, M. (2010). Tarsius wallacei: A new tarsier species from Central Sulawesi occupies a discontinuous range. International Journal of Primatology, 36(6), 1107–1122.CrossRefGoogle Scholar
  38. Miller, G. S., & Hollister, N. (1921). Twenty new mammals collected by H.C. Raven in Celebes. Proceedings of the Biological Society of Washington, 34, 93–104.Google Scholar
  39. Musser, G. G., & Dagosto, M. (1987). The identity of Tarsius pumilus, a pygmy species endemic to the montane mossy forests of Central Sulawesi. American Museum Novitates, 2867, 1–53.Google Scholar
  40. Neri-Arboleda, I., Stott, P., & Arboleda, N. P. (2002). Home ranges, spatial movements and habitat associations of the Philippine tarsier (Tarsius syrichta) in Corella, Bohol. Journal of Zoology, 257, 387–402.CrossRefGoogle Scholar
  41. Niemitz, C. (1984). Taxonomy and distribution of the genus Tarsius Storr, 1780. In C. Niemitz (Ed.), Biology of tarsiers (pp. 1–16). Stuttgart: Gustav Fischer Verlag.Google Scholar
  42. Niemitz, C., Nietsch, A., Warter, S., & Rumpler, Y. (1991). Tarsius dianae: A new primate species from Central Sulawesi (Indonesia). Folia Primatologica, 56(2), 105–116.CrossRefGoogle Scholar
  43. Nietsch, A. (1999). Duet vocalizations among different populations of Sulawesi tarsiers. International Journal of Primatology, 20(4), 567–583.CrossRefGoogle Scholar
  44. Pallas, P. S. (1778). Novae species Quadrupedum e Glirium ordine, cum illustrationibus variis complurium ex hoc ordine Animalium. Walther: Erlangen.Google Scholar
  45. Pangau-Adam, M. Z. (2003). Avian nest predation in forest margin areas in Lore Lindu National Park, Central Sulawesi, Indonesia. Unpublished Doctoral Dissertation, Georg-August University of Göttingen, Germany.Google Scholar
  46. Quan, R. -C., Ren, G., Behm, J. E., Wang, L., Huang, Y., Long, Y., et al. (2011). Why does Rhinopithecus bieti prefer the highest elevation range in winter? A test of the sunshine hypothesis. PloS One, 6(9), e24449, 1–9.Google Scholar
  47. Rapoport, E. H., & Bariloche, F. (1982). Areography: Geographical strategies of species. New York: Pergamon Press.Google Scholar
  48. Řeháková-Petrů, M., Policht, R., & Peške, L. (2012). Acoustic Repertoire of the Philippine Tarsier (Tarsius syrichta fraterculus) and individual variation of long-distance calls. International Journal of Zoology, e602401, 1–10.Google Scholar
  49. Richard, A. F. (1985). Sympatry, competition, and the niche. In A. F. Richard (Ed.), Primates in nature. Chicago: W.H. Freeman and Co.Google Scholar
  50. Ruggiero, A., & Lawton, J. H. (2008). Are there latitudinal and altidudinal Rapoport effects in the geographic ranges of Andean passerine birds? Biological Journal of the Linnean Society, 63(2), 283–304.CrossRefGoogle Scholar
  51. Schluter, D. (1984). A variance test for detecting species associations, with some example applications. Ecology, 65, 998–1005.CrossRefGoogle Scholar
  52. Schweithelm, J., Wirawan, N., Elliott, J., & Khan, J. (1992). Sulawesi parks program land use and socio-economic survey: Lore Lindu national park and Morowali nature reserve. Jakarta: The Nature Conservancy.Google Scholar
  53. Shekelle, M. (2003). Taxonomy and biogeography of Eastern Tarsiers. Unpublished Doctoral Dissertation, Washington University, St. Louis.Google Scholar
  54. Shekelle, M. (2008). Distribution and biogeography of tarsiers. In M. Shekelle, I. Maryanto, C. P. Groves, H. Schulze, & H. Fitch-Snyder (Eds.), Primates of the oriental night (pp. 13–28). Cibinong: Indonesian Institute of Sciences.Google Scholar
  55. Shekelle, M., & Salim, A. (2009). An acute conservation threat to two tarsier species in the Sangihe Island chain, North Sulawesi, Indonesia. Oryx, 43(3), 419–426.CrossRefGoogle Scholar
  56. Shekelle, M., Leksono, S. M., Ichwan, L. L. S., & Masala, Y. (1997). The natural history of tarsiers of North and Central Sulawesi. Sulawesi Primate Newsletter, 4, 4–11.Google Scholar
  57. Southwick, C., Yongzu, Z., Haisheng, J., Zhenhe, L., & Wenyuan, Q. (1996). Population ecology of rhesus macaques in tropical and temperate habitats in China. In J. E. Fa & D. G. Lindburg (Eds.), Evolution and ecology of macaque societies (pp. 95–105). Cambridge: Cambridge University Press.Google Scholar
  58. Stevens, G. C. (1992). The elevational gradient in altitudinal range: An extension of Rapoport’s latitudinal rule to altitude. American Naturalist, 140(6), 893–911.PubMedCrossRefGoogle Scholar
  59. Wenyuan, Q., Yongzu, Z., Manry, D., & Southwick, C. (1993). Rhesus monkeys (Macaca mulatta) in the Taihang mountains, Jiyuan county, Henan, China. International Journal of Primatology, 14(4), 607–621.CrossRefGoogle Scholar
  60. White, G. C., and Garrott, R. A. (1987). Analysis of wildlife radio-tracking data (pp. 383). San Diego: Academic Press.Google Scholar
  61. Whiten, A., Byrne, R., & Henzi, S. (1987). The behavioral ecology of mountain baboons. International Journal of Primatology, 8(4), 367–388.CrossRefGoogle Scholar
  62. Whitten, T., Mustafa, M., & Henderson, G. (2002). The Ecology of Sulawesi (2nd ed., p. 777). Jakarta: Periplus Press.Google Scholar
  63. Zapata, F., Gaston, K., & Chown, S. (2003). Mid domain models of species richness gradients: Assumptions, methods and evidence. Journal of Animal Ecology, 72(4), 677–690.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of AnthropologyTexas A&M UniversityCollege StationUSA

Personalised recommendations