Advertisement

High Altitude Primates, Extreme Primates, and Anthropological Primatology: Or, There is More to Human Evolution than Tool Use, Culture, or African Apes

  • Ken Sayers
Chapter
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)

Abstract

Within primatology, human origins research is becoming increasingly dominated by discussions that limit their scope to data from extant apes. It is argued that this trend is counterproductive and has resulted in some misleading assertions about early hominid evolution, as numerous lines of evidence suggest considerable divergence in the human and chimpanzee lineages since we shared a common ancestor. Anthropological primatologists must spread their net more widely, and utilize data from species throughout the order. Primates living at high altitudes and other comparatively marginal habitats provide critical data concerning survival in the types of extreme environments that became increasingly important throughout human evolution. The study of such animals is vital not merely because they live at high altitudes, nor that they can necessarily provide a referential model for human evolution. Rather, they yield information on the upper limits of nonhuman primate adaptation, and the range of strategies that can be utilized to reach such limits. These primates thus represent study systems ideal for elucidating general ecological principles that can be applied to particular hominids given their individual characters. Changes in altitude have predictable, quantifiable effects that influence the anatomical, physiological, and behavioral evolution of organisms. Human adaptation in relation to altitude or concurrent changes in habitat characteristics cannot be understood by considering only living apes, and, as all primates are unique, there is no single “best” living model for early hominids. The reconstruction of human origins, as exemplified by adaptation to marginal habitats, necessitates the utilization of broad evolutionary principles derived from the study of many animals.

Keywords

Origins modeling Ecogeographic rules Marginal habitats Evolutionary biology History of anthropology 

Notes

Acknowledgments

The author would like to thank Marilyn Norconk, Charles Menzel, and Owen Lovejoy for useful conversations that contributed to the ideas expressed in this chapter. The opinions expressed are those of the author. Field work with Himalayan gray langurs was supported by the L.S.B. Leakey Foundation and Kent State University. The writing of this chapter was supported in part by grants HD-38051, HD-060563, HD-056352, and 1F32HD061177 from the National Institutes of Health (NIH). The contents of this chapter do not necessarily represent the official views of NIH or the Leakey Foundation.

References

  1. Albrecht, G. H., & Miller, J. M. A. (1993). Geographic variation in primates: A review with implications for interpreting fossils. In W. H. Kimbel & L. B. Martin (Eds.), Species, species concepts, and primate evolution (pp. 123–161). New York: Plenum Press.Google Scholar
  2. Allen, J. A. (1877). The influence of physical conditions in the genesis of species. Radical Review, 1, 108–140.Google Scholar
  3. Altmann, S. (1998). Foraging for survival. Chicago: University of Chicago Press.Google Scholar
  4. Andersen, D. C. (1987). Below-ground herbivory in natural communities: A review emphasizing fossorial animals. Quarterly Review of Biology, 62, 261–286.Google Scholar
  5. Baker, P. T. (1984). The adaptive limits of human populations. Man, 19, 1–14.Google Scholar
  6. Beall, C. M. (2006). Andean, Tibetan, and Ethiopian patterns of adaptation to high-altitude hypoxia. Integrative and Comparative Biology, 46, 18–24.PubMedGoogle Scholar
  7. Behrensmeyer, A. K., Todd, N. E., Potts, R., & McBrinn, G. E. (1997). Late Pliocene faunal turnover in the Turkana Basin, Kenya and Ethiopia. Science, 278, 1589–1594.PubMedGoogle Scholar
  8. Bergmann, C. (1847). Ueber die verhaltnisse der warmeokonomie der thiere zu ihrer grosse. Gottinger Studien, 3, 595–708.Google Scholar
  9. Bishop, N. H. (1979). Himalayan langurs: Temperate colobines. Journal of Human Evolution, 8, 251–281.Google Scholar
  10. Bonnefille, R., Potts, R., Chalié, F., Jolly, D., & Peyron, O. (2004). High-resolution vegetation and climate change associated with Pliocene Australopithecus afarensis. Proceedings of the National Academy of Sciences of the United States of America, 101, 12125–12129.PubMedCentralPubMedGoogle Scholar
  11. Bornman, J. F., & Vogelmann, T. C. (1991). Effect of UV-B radiation on leaf optical properties measured with fibre optics. Journal of Experimental Botany, 42, 547–554.Google Scholar
  12. Brain, C. K. (1981). The hunters or the hunted? An introduction to African cave taphonomy. Chicago: The University of Chicago Press.Google Scholar
  13. Brunet, M., Beauvilain, A., Coppens, Y., Heintz, E., Moutaye, A. H. E., & Pilbeam, D. (1995). The first australopithecine 2,500 kilometres west of the Rift Valley (Chad). Nature, 378, 273–275.PubMedGoogle Scholar
  14. Brunet, M., Guy, F., Pilbeam, D., Mackaye, H. T., Likius, A., Ahounta, D., et al. (2002). A new hominid from the Upper Miocene of Chad, Central Africa. Nature, 418, 145–151.PubMedGoogle Scholar
  15. Buffon, G. L., & Comte de. (1791/1972). The nomenclature of apes. In W. Smellie (Translator), Natural history, general and particular (vol. 10, pp. 1–36). Reprinted in T. D. McCown & K. A. R. Kennedy (Eds.), Climbing man’s family tree: A collection of major writings on human phylogeny, 1699 to 1971 (pp. 49–67). Englewood Cliffs: Prentice-Hall.Google Scholar
  16. Bulmer, M. (1994). Theoretical evolutionary ecology. Sunderland: Sinauer Associates.Google Scholar
  17. Burt, J. (2006). Solly Zuckerman: The making of a primatological career in Britain, 1925–1945. Studies in History and Philosophy of Biological and Biomedical Sciences, 37, 295–310.PubMedGoogle Scholar
  18. Cahill, A. E., Aiello-Lammens, M. E., Fisher-Reid, M. C., Hua, X., Karanewsky, C. J., Ryu, H. Y., et al. (2012). How does climate change cause extinction? Proceedings of the Royal Society B,. doi: 10.1098/rspb.2012.1890.PubMedGoogle Scholar
  19. Caldwell, M. M., Björn, L. O., Bornman, J. F., Flint, S. D., Kulandaivelu, G., Teramura, A. H., et al. (1998). Effects of increased solar ultraviolet radiation on terrestrial ecosystems. Journal of Photochemistry and Photobiology B: Biology, 46, 40–52.Google Scholar
  20. Carpenter, C. R. (1934). A field study of the behavior and social relations of howling monkeys. Comparative Psychology Monographs, 10, 1–168.Google Scholar
  21. Charnov, E. L. (1976). Optimal foraging: Attack strategy of a mantid. The American Naturalist, 110, 141–151.Google Scholar
  22. Cook, R. G. (1993). The experimental analysis of cognition in animals. Psychological Science, 4, 174–178.Google Scholar
  23. Crockett, C. M. (1987). Diet, dimorphism and demography: Perspectives from howlers to hominids. In W. G. Kinzey (Ed.), The evolution of human behavior: Primate models (pp. 115–135). Albany: State University of New York Press.Google Scholar
  24. Cronin, E. W. (1979). The Arun: A natural history of the world’s deepest valley. Boston: Houghton Mifflin Company.Google Scholar
  25. Curtin, R. A. (1982). Range use of gray langurs in highland Nepal. Folia Primatologica, 38, 1–18.Google Scholar
  26. Dai, X., Jia, X., Zhang, W., Bai, Y., Zhang, J., Wang, Y., et al. (2009). Plant height-crown radius and canopy coverage-density relationships determine above-ground biomass-density relationship in stressful environments. Biology Letters, 5, 571–573.PubMedCentralPubMedGoogle Scholar
  27. Dart, R. A. (1925). Australopithecus africanus: The man-ape of South Africa. Nature, 115, 195–199.Google Scholar
  28. Dart, R. A. (1953). The predatory transition from ape to man. International Anthropological and Linguistics Review, 1, 201–218.Google Scholar
  29. Darwin, C. (1874/1998). The descent of man, and selection in relation to sex (2nd ed., originally published in 1874). Amherst: Prometheus Books.Google Scholar
  30. Efstratiou, N., Biagi, P., Elefanti, P., Karkanas, P., & Ntinou, M. (2006). Prehistoric exploitation of Grevena highland zones: Hunters and herders along the Pindus chain of western Macedonia (Greece). World Archaeology, 38, 415–435.Google Scholar
  31. Efstratiou, N., Biagi, P., Angelucci, D. E. & Nisbet, R. (2011). Middle palaeolithic chert exploitation in the Pindus Mountains of western Macedonia, Greece. Antiquity, 85.Google Scholar
  32. Emlen, J. M. (1966). The role of time and energy in food preference. The American Naturalist, 100, 611–617.Google Scholar
  33. Gaulin, S. J. C. (1979). A Jarman/Bell model of primate feeding niches. Human Ecology, 7, 1–20.Google Scholar
  34. Glazko, G. V., & Nei, M. (2003). Estimation of divergence times for major lineages of primate species. Molecular Biology and Evolution, 20, 424–434.PubMedGoogle Scholar
  35. Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London B, 205, 581–598.Google Scholar
  36. Grueter, C. C., Chapais, B., & Zinner, D. (2012). Evolution of multilevel social systems in nonhuman primates and humans. International Journal of Primatology, 33, 1002–1037.PubMedCentralPubMedGoogle Scholar
  37. Haile-Selassie, Y. (2001). Late Miocene hominids from the Middle Awash, Ethiopia. Nature, 412, 178–181.PubMedGoogle Scholar
  38. Haile-Selassie, Y., Suwa, G., & White, T. D. (2004). Late Miocene teeth from Middle Awash, Ethiopia, and early hominid dental evolution. Science, 303, 1503–1505.PubMedGoogle Scholar
  39. Hailman, J.P. (1998). Comparative methods in behavioral studies. In G. Greenberg and M.M. Lawaway (Eds.), Comparative psychology: A handbook. New York: Garland Publishing, Inc. 236–246Google Scholar
  40. Harcourt, A. H., & Schreier, B. M. (2009). Diversity, body mass, and latitudinal gradients in primates. International Journal of Primatology, 30, 283–300.Google Scholar
  41. Hart, D., & Sussman, R. W. (2005). Man the hunted: Primates, predators, and human evolution. New York: Westview Press.Google Scholar
  42. Hatley, T., & Kappelman, J. (1980). Bears, pigs, and Plio-Pleistocene hominids: A case for the exploitation of belowground food resources. Human Ecology, 8, 371–387.Google Scholar
  43. Hernandez-Aguilar, R. A., Moore, J., & Pickering, T. R. (2007). Savanna chimpanzees use tools to harvest the underground storage organs of plants. Proceedings of the National Academy of Sciences, 104, 19210–19213.Google Scholar
  44. Hewes, G. W. (1973). Primate communication and the gestural origin of language [with comments and reply]. Current Anthropology, 14, 5–24.Google Scholar
  45. Hobhouse, L. T. (1901). Mind in evolution. London: Macmillan and Co., Limited.Google Scholar
  46. Hockett, C. F. (1960). The origin of speech. Scientific American, 203, 89–96.PubMedGoogle Scholar
  47. Hockings, K. J., Anderson, J. R., & Matsuzawa, T. (2010). Flexible feeding on cultivated underground storage organs by rainforest-dwelling chimpanzees at Bossou, West Africa. Journal of Human Evolution, 58, 227–233.PubMedGoogle Scholar
  48. Hooten, E. (1955). The importance of primate studies in anthropology. In J. A. Gavan (Ed.), The non-human primates and human evolution (pp. 1–10). Detroit: Wayne University Press.Google Scholar
  49. Huxley, T. H. (1863). Evidence as to man’s place in nature. New York: D. Appleton and Company.Google Scholar
  50. Imanishi, K. (1965). Identification: A process of socialization in the subhuman society of Macaca fuscata. In K. Imanishi & S. A. Altmann (Eds.), Japanese monkeys: A collection of translations (pp. 30–51). Edmonton: University of Alberta.Google Scholar
  51. Jablonski, N. G., & Chaplin, G. (2010). Human skin pigmentation as an adaptation to UV radiation. Proceedings of the National Academy of Sciences, 107, 8962–8968.Google Scholar
  52. Jay, P. (1968). Primate field studies and human evolution. In P. C. Jay (Ed.), Primates: Studies in adaptation and variability (pp. 487–503). New York: Holt, Rinehart and Winston.Google Scholar
  53. Jolly, A. (1966). Lemur social behavior and primate intelligence. Science, 153, 501–506.PubMedGoogle Scholar
  54. Kamilar, J. M., Muldoon, K. M., Lehman, S. M., & Herrera, J. P. (2012). Testing Bergmann’s rule and the resource seasonality hypothesis using GIS-based climate data. American Journal of Physical Anthropology,. doi: 10.1002/ajpa.22002.PubMedGoogle Scholar
  55. Kay, R. N. B., & Davies, A. G. (1994). Digestive physiology. In A. G. Davies & J. F. Oates (Eds.), Colobine monkeys: Their ecology, behaviour and evolution (pp. 229–249). Cambridge: Cambridge University Press.Google Scholar
  56. Kinzey, W. G. (Ed.). (1987). The evolution of human behavior: Primate models. Albany: State University of New York Press.Google Scholar
  57. Kirkpatrick, R. C. (1998). Social organization and range use in the Yunnan snub-nosed monkey Rhinopithecus bieti. International Journal of Primatology, 19, 13–51.Google Scholar
  58. Koenig, A., & Borries, C. (2001). Socioecology of Hanuman langurs: The story of their success. Evolutionary Anthropology Issues News and Reviews, 10, 122–137.Google Scholar
  59. Koenig, A., & Borries, C. (2012). Hominoid dispersal patterns and human evolution. Evolutionary Anthropology, 21, 108–112.PubMedGoogle Scholar
  60. Köhler, W. (1925). The mentality of apes. London: Routledge & Kegan Paul.Google Scholar
  61. Laden, G., & Wrangham, R. (2005). The rise of the hominids as an adaptive shift in fallback foods: Plant underground storage organs (USOs) and australopith origins. Journal of Human Evolution, 49, 482–498.Google Scholar
  62. Latimer, B. M., White, T. D., Kimbel, W. H., Johanson, D. C., & Lovejoy, C. O. (1981). The pygmy chimpanzee is not a living missing link in human evolution. Journal of Human Evolution, 10, 475–488.Google Scholar
  63. León-Velarde, F., Sanchez, J., Bigard, A. X., Brunet, A., Lesty, C., & Monge, C. (1993). High-altitude tissue adaptation in Andean coots: Capillarity, fibre area, fibre type and enzymatic activities of skeletal muscle. Journal of Comparative Physiology B, 163, 52–58.Google Scholar
  64. Lévi-Strauss, C. (1968). The concept of primitiveness. In R. B. Lee & I. DeVore (Eds.), Man the hunter (pp. 349–352). New York: Aldine Publishing Company.Google Scholar
  65. Liem, K. F. (1980). Adaptive significance of intra-and interspecific differences in the feeding repertoires of cicGoogle Scholar
  66. Lovejoy, C. O. (1981). The origin of man. Science, 211, 341–350.PubMedGoogle Scholar
  67. Lovejoy, C. O. (1993). Modeling human origins: Are we sexy because we’re smart, or smart because we’re sexy. In D. T. Rasmussen (Ed.), The origin and evolution of humans and humanness (pp. 1–28). Boston: Jones and Bartlett Publisher.Google Scholar
  68. Lovejoy, C. O. (2009). Reexamining human origins in light of Ardipithecus ramidus. Science, 326(74), 74e1–74e8.PubMedGoogle Scholar
  69. Lovejoy, C. O., Cohn, M. J., & White, T. D. (1999). Morphological analysis of the mammalian postcranium: A developmental perspective. Proceedings of the National Academy of Sciences, 96, 13247–13252.Google Scholar
  70. Lovejoy, C. O., Simpson, S. W., White, T. D., Asfaw, B., & Suwa, G. (2009a). Careful climbing in the miocene: The forelimbs of Ardipithecus ramidus and humans are primitive. Science, 326, e1–e8.Google Scholar
  71. Lovejoy, C. O., Suwa, G., Simpson, S. W., Matternes, J. H., & White, T. D. (2009b). The great divides: Ardipithecus ramidus reveals the postcrania of our last common ancestors with African apes. Science, 326, 100–106.PubMedGoogle Scholar
  72. MacArthur, R. H., & Pianka, E. R. (1966). On optimal use of a patchy environment. The American Naturalist, 100, 603–609.Google Scholar
  73. MacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography. Princeton: Princeton University Press.Google Scholar
  74. Mayr, E. (1982). The growth of biological thought: Diversity, evolution, and inheritance. Cambridge: Belknap Press.Google Scholar
  75. Mayr, E. (1983). How to carry out the adaptationist program? American Naturalist, 121, 324–334.Google Scholar
  76. McGrew, W. C. (2010). In search of the last common ancestor: New findings on wild chimpanzees. Philosophical Transactions of the Royal Society B, 365, 3267–3276.Google Scholar
  77. Meiri, S. (2011). Bergmann’s rule-what’s in a name? Global Ecology and Biogeography, 20, 203–207.Google Scholar
  78. Meiri, S., & Dayan, T. (2003). On the validity of Bergmann’s rule. Journal of Biogeography, 30, 331–351.Google Scholar
  79. Menzel, C. R. (1997). Primates’ knowledge of their natural habitat: As indicated in foraging. In A. Whiten & R. Byrne (Eds.), Machiavellian intelligence II: Extensions and evaluations (pp. 207–239). Cambridge: Cambridge University Press.Google Scholar
  80. Minkoff, E. C. (1983). Evolutionary biology. Reading: Addison-Wesley Publishing Company.Google Scholar
  81. Mitani, J. C., & Rodman, P. S. (1979). Territoriality: The relation of ranging pattern and home range size to defendability, with an analysis of territoriality among primate species. Behavioral Ecology and Sociobiology, 5, 241–251.Google Scholar
  82. Moore, J. (1996). Savanna chimpanzees, referential models and the last common ancestor. In W. C. McGrew, L. F. Marchant, & T. Nishida (Eds.), Great ape societies (pp. 275–292). Cambridge: Cambridge University Press.Google Scholar
  83. Moura, A. C. A., & Lee, P. C. (2004). Capuchin stone tool use in Caatinga dry forest. Science, 306, 1909.PubMedGoogle Scholar
  84. Newman, M. T. (1953). The application of ecological rules to the racial anthropology of the aboriginal New World. American Anthropologist, 55, 311–327.Google Scholar
  85. Oakley, K. P. (1964). Man the tool-maker. Third phoenix edition. Chicago: The University of Chicago Press.Google Scholar
  86. Oates, J. F., Davies, A. G., & Delson, E. (1994). The diversity of living colobines. In A. G. Davies & J. F. Oates (Eds.), Colobine monkeys: Their ecology, behaviour and evolution (pp. 45–73). Cambridge: Cambridge University Press.Google Scholar
  87. Paterson, J. D. (1996). Coming to America: Acclimation in macaque body structures and Bergmann’s rule. International Journal of Primatology, 17, 585–611.Google Scholar
  88. Peters, C. R., & Vogel, J. C. (2005). Africa’s wild C4 plant foods and possible early hominid diets. Journal of Human Evolution, 48, 219–236.PubMedGoogle Scholar
  89. Pianka, E. R. (1994). Evolutionary ecology (5th ed.). New York: HarperCollins College Publishers.Google Scholar
  90. Plavcan, J. M., Van Schaik, C. P., & McGraw, W. S. (2005). Seasonally, social organization, and sexual dimorphism in primates. In D. K. Brockman & C. P. van Schaik (Eds.), Seasonality in primates (pp. 401–441). Cambridge: Cambridge University Press.Google Scholar
  91. Polunin, O., & Stainton, A. (1997). Flowers of the Himalaya. Delhi: Oxford University Press.Google Scholar
  92. Potts, R. (1998). Environmental hypotheses of hominin evolution. Yearbook of Physical Anthropology, 41, 93–136.Google Scholar
  93. Potts, R. (2012). Evolution and environmental change in early human prehistory. Annual Review of Anthropology, 41, 151–167.Google Scholar
  94. Pruetz, J. D., & Bertolani, P. (2007). Savanna chimpanzees, Pan troglodytes, hunt with tools. Current Biology, 17, 1–6.Google Scholar
  95. Pruetz, J. D., & LaDuke, T. C. (2010). Reaction to fire by savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal: Conceptualization of “fire behavior” and the case for a chimpanzee model. American Journal of Physical Anthropology, 141, 646–650.PubMedGoogle Scholar
  96. Pusey, A. E. (2001). Of genes and apes: Chimpanzee social organization and reproduction. In F. B. M. de Waal (Ed.), Tree of origin: What primate behavior can tell us about human social evolution (pp. 9–37). Cambridge: Harvard University Press.Google Scholar
  97. Pyke, G. H., Pulliam, H. R., & Charnov, E. L. (1977). Optimal foraging: A selective review of theory and tests. The Quarterly Review of Biology, 52, 137–154.Google Scholar
  98. Reed, K. E., & Fish, J. L. (2005). Tropical and seasonal influences on human evolution. In D. K. Brockman & C. P. van Schaik (Eds.), Seasonality in primates (pp. 489–518). Cambridge: Cambridge University Press.Google Scholar
  99. Ren, B., Li, M., & Wei, F. (2008). Preliminary study on digging and eating underground plant corms by wild Yunnan snub-nosed monkeys at Tacheng, Yunnan, China. Acta Theriologica Sinica, 28, 237–241.Google Scholar
  100. Richard, A. F., Goldstein, S. J., & Dewar, R. E. (1989). Weed macaques: The evolutionary implications of macaque feeding ecology. International Journal of Primatology, 10, 569–594.Google Scholar
  101. Robinson, B. W., & Wilson, D. S. (1998). Optimal foraging, specialization, and a solution to Liem’s paradox. The American Naturalist, 151, 223–235.PubMedGoogle Scholar
  102. Rodman, P. S. (1999). Whither primatology? The place of primates in contemporary anthropology. Annual Review of Anthropology, 28, 311–339.Google Scholar
  103. Rosenzweig, M. L. (1968). The strategy of body size in mammalian carnivores. American Midland Naturalist, 80, 299–315.Google Scholar
  104. Rowe, N. (1996). The pictorial guide to the living primates. East Hampton: Pogonias Press.Google Scholar
  105. Ruff, C. B. (1993). Climatic adaptation and hominid evolution: The thermoregulatory imperative. Evolutionary Anthropology, 2, 53–60.Google Scholar
  106. Sayers, K. (2013). On folivory, competition, and intelligence: Generalisms, overgeneralizations, and models of primate evolution. Primates, 54, 111–124.PubMedCentralPubMedGoogle Scholar
  107. Sayers, K., & Lovejoy, C. O. (2008). The chimpanzee has no clothes: A critical examination of Pan troglodytes in models of human evolution (with comments and reply). Current Anthropology, 49, 87–114.Google Scholar
  108. Sayers, K., & Menzel, C. R. (2012). Memory and foraging theory: Chimpanzee utilization of optimality heuristics in the rank-order recovery of hidden foods. Animal Behaviour, 84, 795–803.PubMedCentralPubMedGoogle Scholar
  109. Sayers, K., & Norconk, M. A. (2008). Himalayan Semnopithecus entellus at Langtang National Park, Nepal: Diet, activity patterns, and resources. International Journal of Primatology, 29, 509–530.Google Scholar
  110. Sayers, K., Norconk, M. A., & Conklin-Brittain, N. L. (2010). Optimal foraging on the roof of the world: Himalayan langurs and the classical prey model. American Journal of Physical Anthropology, 141, 337–357.PubMedCentralPubMedGoogle Scholar
  111. Sayers, K., Raghanti, M. A., & Lovejoy, C. O. (2012). Human evolution and the chimpanzee referential doctrine. Annual Review of Anthropology, 41, 119–138.Google Scholar
  112. Sayers, K. & Lovejoy, C. O. (Submitted). Blood, bulbs, and bunodonts: On the hunting hypothesis, evolutionary ecology, and the probable dietary strategies of Ardipithecus, Australopithecus, and early Homo.Google Scholar
  113. Schillaci, M. A., Meijaard, E., & Clark, T. (2009). The effect of island area on body size in a primate species from the Sunda Shelf Islands. Journal of Biogeography, 36, 362–371.Google Scholar
  114. Schoener, T. W. (1971). Theory of feeding strategies. Annual Review of Ecology and Systematics, 2, 369–404.Google Scholar
  115. Serrat, M. A., King, D., & Lovejoy, C. O. (2008). Temperature regulates limb length in homeotherms by directly modulating cartilage growth. Proceedings of the National Academy of Sciences, 105, 19348–19353.Google Scholar
  116. Sih, A., & Christensen, B. (2001). Optimal diet theory: When does it work, and when and why does it fail? Animal Behaviour, 61, 379–390.Google Scholar
  117. Storz, J. F., Scott, G. R., & Cheviron, Z. A. (2010). Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. Journal of Experimental Biology, 213, 4125–4136.PubMedCentralPubMedGoogle Scholar
  118. Strier, K. B. (2001). Beyond the apes: Reasons to consider the entire primate order. In F. B. de Waal (Ed.), Tree of origin (pp. 69–93). Cambridge: Harvard University Press.Google Scholar
  119. Sussman, R. W. (2007). A brief history of primate field studies. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (pp. 6–10). Oxford: Oxford University Press.Google Scholar
  120. Suwa, G., Kono, R. T., Simpson, S. W., Asfaw, B., Lovejoy, C. O., & White, T. D. (2009). Paleobiological implications of the Ardipithecus ramidus dentition. Science, 326, 94–99.PubMedGoogle Scholar
  121. Suzuki, A. (1965). An ecological study of wild Japanese monkeys in snowy areas–focused on their food habits. Primates, 6, 31–72.Google Scholar
  122. Takenaka, O. (1980). Oxygen equilibrium characteristics of hemoglobins of baboons, Theropithecus gelada, Papio hamadryas and Papio anubis. Journal of Human Evolution, 9, 269–275.Google Scholar
  123. Teaford, M.F., & Ungar, P.S. (2000). Diet and the evolution of the earliest human ancestors. Proceedings of the National Academy of Sciences of the United States of America, 97, 13506–13511.Google Scholar
  124. Tooby, J., & DeVore, I. (1987). The reconstruction of hominid behavioral evolution through strategic modeling. In W. G. Kinzey (Ed.), The evolution of human behavior: Primate models (pp. 183–237). New York: State University of New York Press.Google Scholar
  125. Toth, N., Schick, K. D., Savage-Rumbaugh, E. S., Sevcik, R. A., & Rumbaugh, D. M. (1993). Pan the tool-maker: Investigations into the stone tool-making and tool-using capabilities of a bonobo (Pan paniscus). Journal of Archaeological Science, 20, 81–91.Google Scholar
  126. Treves, A., & Palmqvist, P. (2007). Reconstructing hominin interactions with mammalian carnivores (6.0–1.8 ma). In S. Gursky & K. A. I. Nekaris (Eds.), Primate anti-predator strategies (pp. 355–381). New York: Springer.Google Scholar
  127. Tyson, E. (1699/1972). Orang-outang, sive Homo sylvestris: Or the anatomy of a Pygmie. In T. D. McCown & K. A. R. Kennedy (Eds.), Climbing man’s family tree: A collection of major writings on human phylogeny (pp. 41–48). Englewood Cliffs: Prentice-Hall.Google Scholar
  128. Ungar, P. S., Grine, F. E., & Teaford, M. F. (2008). Dental microwear and diet of the Plio-Pleistocene hominin Paranthropus boisei. PLoS ONE, 3, e2044.PubMedCentralPubMedGoogle Scholar
  129. van Schaik, C. P., & Brockman, D. K. (2005). Seasonally in primate ecology, reproduction, and life history: An overview. In D. K. Brockman & C. P. van Schaik (Eds.), Seasonality in primates (pp. 3–20). Cambridge: Cambridge University Press.Google Scholar
  130. Vrba, E. S. (1980). Evolution, species and fossils: How did life evolve? South African Journal of Science, 76, 61–84.Google Scholar
  131. Vrba, E. S. (1993). Turnover-pulses, the red queen, and related topics. American Journal of Science 293-A, 418–452.Google Scholar
  132. Vrba, E. S., Denton, G. H., & Prentice, M. L. (1989). Climatic influences on early hominid behavior. Ossa, 14, 127–156.Google Scholar
  133. Washburn, S. L., & DeVore, I. (1961). Social behavior of baboons and early man. In S. L. Washburn (Ed.), Social life of early man. Chicago: Aldine Publishing Company.Google Scholar
  134. Weinstein, K. J. (2011). Climatic and altitudinal influences on variation in Macaca limb morphology. Anatomy Research International, Article ID 714624.Google Scholar
  135. Westneat, D. F., & Fox, C. W. (Eds.). (2010). Evolutionary behavioral ecology. Oxford: Oxford University Press.Google Scholar
  136. Whelan, C. J., & Schmidt, K. A. (2007). Food acquisition, processing and digestion. In D. W. Stephens, J. S. Brown, & R. C. Ydenberg (Eds.), Foraging: Behavior and ecology (pp. 141–172). Chicago: University of Chicago Press.Google Scholar
  137. White, T. D., Asfaw, B., Beyene, Y., Haile-Selassie, Y., Lovejoy, C. O., Suwa, G., et al. (2009). Ardipithecus ramidus and the paleobiology of early hominids. Science, 326, 75–86.PubMedGoogle Scholar
  138. WoldeGabriel, G., Haile-Selassie, Y., Renne, P. R., Hart, W. K., Ambrose, S. H., Asfaw, B., et al. (2001). Geology and palaeontology of the late Miocene Middle Awash valley, Afar rift, Ethiopia. Nature, 412, 175–178.PubMedGoogle Scholar
  139. Wolpoff, M. H. (1999). Paleoanthropology (2nd ed.). Boston: McGraw-Hill.Google Scholar
  140. Wrangham, R. W. (1987). The significance of African apes for reconstructing human social evolution. In W. G. Kinzey (Ed.), The evolution of human behavior: Primate models (pp. 51–71). Albany: State University of New York Press.Google Scholar
  141. Wrangham, R., & Pilbeam, D. (2002). African apes as time machines. In B. M. F. Galdikas, N. E. Briggs, L. K. Sheeran, G. L. Shapiro, & J. Goodall (Eds.), All apes great and small (pp. 5–17). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  142. Wrangham, R. W., Jones, J. H., Laden, G., Pilbeam, D., & Conklin-Brittain, N. L. (1999). The raw and the stolen: Cooking and the ecology of human origins (with comments and reply). Current Anthropology, 40, 567–594.PubMedGoogle Scholar
  143. Yerkes, R. M. (1916). The mental life of monkeys and apes: A study of ideational behavior. Behavior Monographs, 3, 1–145.Google Scholar
  144. Yerkes, R. M., & Yerkes, A. W. (1929). The great apes. New Haven: Yale University Press.Google Scholar
  145. Yu, L., Wang, X., Ting, N., & Zhang, Y. (2011). Mitogenomic analysis of Chinese snub-nosed monkeys: Evidence of positive selection in NADH dehydrogenase genes in high-altitude adaptation. Mitochondrion, 11, 497–503.PubMedGoogle Scholar
  146. Zihlman, A. L. (1978). Women in evolution, part II: Subsistence and social organization among early hominids. Signs, 4, 4–20.Google Scholar
  147. Zuckerman, S. (1932). The social life of monkeys and apes. London: Kegan Paul, Trench, Trubner & Company, Limited.Google Scholar
  148. Zuckerman, S. (1963). Concluding remarks. Symposia of the Zoological Society of London, 10, 119–123.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Language Research CenterGeorgia State UniversityDecaturUSA

Personalised recommendations