General Approach to the Diagnosis and Management of Glomerular Diseases



Glomerular diseases have a wide spectrum of presentation from microscopic hematuria, asymptomatic proteinuria, and nephrotic syndrome to rapidly progressive renal failure. Each of these clinical scenarios warrants a specific diagnostic approach aimed at establishing the underlying type of glomerular disease, estimating prognosis, and applying therapies that can potentially change the course of the disease process. Treatment of hypertension and urine protein-lowering therapy, especially with renin-angiotensin system inhibition, have critical roles in the management of most patients with glomerular diseases. Specific treatment protocols are also available for many of these diseases, but risk of progression needs to be balanced by the risk of immunosuppressive therapy. Every patient must be considered as an individual, and using the best available evidence, a specific treatment plan developed. This is a challenge because the great majority of therapeutic trials in the domain of glomerular diseases have limitations including limited randomized controlled trials, inadequate attention to clinical as well as pathology features at entry, surrogate endpoints that are unacceptable to regulatory agencies, and most particularly, studies that are underpowered and/or have inadequate duration of follow-up. Additionally, many older studies are difficult to interpret in today’s environment, given new causative factors and new therapies that have developed over the past decade. When considering treatment, patient-related factors such as age and comorbid conditions are of utmost importance. Generic ways to reduce the likelihood of adverse events from treatment should be considered such as adjustment of drug dosage based on patient age, renal function, and comorbid conditions. Additional strategies include consideration of the shortest possible duration of therapy; alternative route of drug administration, e.g., IV versus oral; and switching agents to potentially less toxic drugs as maintenance therapy after successful induction.


Nephrotic Syndrome Lupus Nephritis Mycophenolate Mofetil Membranous Nephropathy Glomerular Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hoy WE, Douglas-Denton RN, Hughson MD, Cass A, Johnson K, Bertram JF. A stereological study of glomerular number and volume: preliminary findings in a multiracial study of kidneys at autopsy. Kidney Int Suppl. 2003;83:S31–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Daum GS, Krolikowski FJ, Reuter KL, Colby JM, Silva WM. Dipstick evaluation of hematuria in abdominal trauma. Am J Clin Pathol. 1988;89(4):538–42.PubMedGoogle Scholar
  3. 3.
    Khadra MH, Pickard RS, Charlton M, Powell PH, Neal DE. A prospective analysis of 1,930 patients with hematuria to evaluate current diagnostic practice. J Urol. 2000;163(2):524–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Harling M, Schablon A, Schedlbauer G, Dulon M, Nienhaus A. Bladder cancer among hairdressers: a meta-analysis. Occup Environ Med. 2010;67(5):351–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Kohler H, Wandel E, Brunck B. Acanthocyturia—a characteristic marker for glomerular bleeding. Kidney Int. 1991;40(1):115–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Fassett RG, Horgan BA, Mathew TH. Detection of glomerular bleeding by phase-contrast microscopy. Lancet. 1982;1(8287):1432–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Gerstein HC, Mann JF, Yi Q, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA. 2001;286(4):421–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Hillege HL, Fidler V, Diercks GF, et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation. 2002;106(14):1777–82.PubMedCrossRefGoogle Scholar
  9. 9.
    UK Prospective Diabetes Study (UKPDS). X. Urinary albumin excretion over 3 years in diet-treated type 2, (non-insulin-dependent) diabetic patients, and association with hypertension, hyperglycaemia and hypertriglyceridaemia. Diabetologia. 1993;36(10):1021–9.CrossRefGoogle Scholar
  10. 10.
    Jones CA, Francis ME, Eberhardt MS, et al. Microalbuminuria in the US population: third National Health and Nutrition Examination Survey. Am J Kidney Dis. 2002;39(3):445–59.PubMedCrossRefGoogle Scholar
  11. 11.
    National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: Part 5. Evaluation of laboratory measurements for clinical assessment of kidney disease. Am J Kidney Dis. 2002;39(2, Suppl 1):S76–110.Google Scholar
  12. 12.
    Kronenberg F. Dyslipidemia and nephrotic syndrome: recent advances. J Ren Nutr. 2005;15(2):195–203.PubMedCrossRefGoogle Scholar
  13. 13.
    Singhal R, Brimble KS. Thromboembolic complications in the nephrotic syndrome: pathophysiology and clinical management. Thromb Res. 2006;118(3):397–407.PubMedCrossRefGoogle Scholar
  14. 14.
    Llach F, Papper S, Massry SG. The clinical spectrum of renal vein thrombosis: acute and chronic. Am J Med. 1980;69(6):819–27.PubMedCrossRefGoogle Scholar
  15. 15.
    Barbour SJ, Greenwald A, Djurdjev O, et al. Disease-specific risk of venous thromboembolic events is increased in idiopathic glomerulonephritis. Kidney Int. 2012;81(2):190–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Lionaki S, Derebail V, Hogan SL, et al. Venous thromboembolism in patients with membranous nephropathy. Clin J Am Soc Nephrol. 2012;7(1):43–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Kanfer A, Kleinknecht D, Broyer M, Josso F. Coagulation studies in 45 cases of nephrotic syndrome without uremia. Thromb Diath Haemorrh. 1970;24(3):562–71.PubMedGoogle Scholar
  18. 18.
    Vaziri ND. Endocrinological consequences of the nephrotic syndrome. Am J Nephrol. 1993;13(5):360–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Lefaucheur C, Stengel B, Nochy D, et al. Membranous nephropathy and cancer: epidemiologic evidence and determinants of high-risk cancer association. Kidney Int. 2006;70(8):1510–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Bellomo R, Wood C, Wagner I, et al. Idiopathic membranous nephropathy in an Australian population: the incidence of thromboembolism and its impact on the natural history. Nephron. 1993;63(2):240–1.PubMedGoogle Scholar
  21. 21.
    Jindal KK. Management of idiopathic crescentic and diffuse proliferative glomerulonephritis: evidence-based recommendations. Kidney Int Suppl. 1999;70:S33–40.PubMedCrossRefGoogle Scholar
  22. 22.
    Arici M, Chana R, Lewington A, Brown J, Brunskill NJ. Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptor-gamma. J Am Soc Nephrol. 2003;14(1):17–27.PubMedCrossRefGoogle Scholar
  23. 23.
    Abbate M, Zoja C, Remuzzi G. How does proteinuria cause progressive renal damage? J Am Soc Nephrol. 2006;17(11):2974–84.PubMedCrossRefGoogle Scholar
  24. 24.
    Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Lancet. 1997;349(9069):1857–1863.Google Scholar
  25. 25.
    de Zeeuw D, Remuzzi G, Parving HH, et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int. 2004;65(6):2309–20.PubMedCrossRefGoogle Scholar
  26. 26.
    Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Reich HN, Troyanov S, Scholey JW, Cattran DC. Remission of proteinuria improves prognosis in IgA nephropathy. J Am Soc Nephrol. 2007;18(12):3177–83.PubMedCrossRefGoogle Scholar
  28. 28.
    Klag MJ, Whelton PK, Randall BL, et al. Blood pressure and end-stage renal disease in men. N Engl J Med. 1996;334(1):13–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Bartosik LP, Lajoie G, Sugar L, Cattran DC. Predicting progression in IgA nephropathy. Am J Kidney Dis. 2001;38(4):728–35.PubMedCrossRefGoogle Scholar
  30. 30.
    Estacio RO, Jeffers BW, Gifford N, Schrier RW. Effect of blood pressure control on diabetic microvascular complications in patients with hypertension and type 2 diabetes. Diabetes Care. 2000;23 Suppl 2:B54–64.PubMedGoogle Scholar
  31. 31.
    Peterson JC, Adler S, Burkart JM, et al. Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann Intern Med. 1995;123(10):754–62.PubMedCrossRefGoogle Scholar
  32. 32.
    Klahr S, Levey AS, Beck GJ, et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med. 1994;330(13):877–84.PubMedCrossRefGoogle Scholar
  33. 33.
    Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60.PubMedCrossRefGoogle Scholar
  34. 34.
    Barnett AH, Bain SC, Bouter P, et al. Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy. N Engl J Med. 2004;351(19):1952–61.PubMedCrossRefGoogle Scholar
  35. 35.
    Jafar TH, Schmid CH, Landa M, et al. Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease. A meta-analysis of patient-level data. Ann Intern Med. 2001;135(2):73–87.PubMedCrossRefGoogle Scholar
  36. 36.
    Kent DM, Jafar TH, Hayward RA, et al. Progression risk, urinary protein excretion, and treatment effects of angiotensin-converting enzyme inhibitors in nondiabetic kidney disease. J Am Soc Nephrol. 2007;18(6):1959–65.PubMedCrossRefGoogle Scholar
  37. 37.
    Li PK, Leung CB, Chow KM, et al. Hong Kong study using valsartan in IgA nephropathy (HKVIN): a double-blind, randomized, placebo-controlled study. Am J Kidney Dis. 2006;47(5):751–60.PubMedCrossRefGoogle Scholar
  38. 38.
    Sharma P, Blackburn RC, Parke CL, McCullough K, Marks A, Black C. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers for adults with early (stage 1 to 3) non-diabetic chronic kidney disease. Cochrane Database Syst Rev. 2011;10, CD007751.PubMedGoogle Scholar
  39. 39.
    Yusuf S, Teo KK, Pogue J, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547–59.PubMedCrossRefGoogle Scholar
  40. 40.
    Wheeler DC, Nair DR, Persaud JW, et al. Effects of dietary fatty acids in an animal model of focal glomerulosclerosis. Kidney Int. 1991;39(5):930–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Moorhead JF, Chan MK, El-Nahas M, Varghese Z. Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet. 1982;2(8311):1309–11.PubMedCrossRefGoogle Scholar
  42. 42.
    Attman PO, Alaupovic P, Samuelsson O. Lipoprotein abnormalities as a risk factor for progressive nondiabetic renal disease. Kidney Int Suppl. 1999;71:S14–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Sandhu S, Wiebe N, Fried LF, Tonelli M. Statins for improving renal outcomes: a meta-analysis. J Am Soc Nephrol. 2006;17(7):2006–16.PubMedCrossRefGoogle Scholar
  44. 44.
    Baigent C, Landray MJ, Reith C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet. 2011;377(9784):2181–92.PubMedCrossRefGoogle Scholar
  45. 45.
    Pozzi C, Andrulli S, Del Vecchio L, et al. Corticosteroid effectiveness in IgA nephropathy: long-term results of a randomized, controlled trial. J Am Soc Nephrol. 2004;15(1):157–63.PubMedCrossRefGoogle Scholar
  46. 46.
    Beck Jr LH, Bonegio RG, Lambeau G, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med. 2009;361(1):11–21.PubMedCrossRefGoogle Scholar
  47. 47.
    Iitaka K, Saka T, Yagisawa K, Aoki Y. Decreasing hypocomplementemia and membranoproliferative glomerulonephritis in Japan. Pediatr Nephrol. 2000;14(8–9):794–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Stevens LA, Greene T, Levey AS. Surrogate end points for clinical trials of kidney disease progression. Clin J Am Soc Nephrol. 2006;1(4):874–84.PubMedCrossRefGoogle Scholar
  49. 49.
    Levey AS, Greene T, Beck GJ, et al. Dietary protein restriction and the progression of chronic renal disease: what have all of the results of the MDRD study shown? Modification of Diet in Renal Disease Study group. J Am Soc Nephrol. 1999;10(11):2426–39.PubMedGoogle Scholar
  50. 50.
    Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N Engl J Med. 2005;353(16):1711–23.PubMedCrossRefGoogle Scholar
  51. 51.
    Saag KG, Koehnke R, Caldwell JR, et al. Low dose long-term corticosteroid therapy in rheumatoid arthritis: an analysis of serious adverse events. Am J Med. 1994;96(2):115–23.PubMedCrossRefGoogle Scholar
  52. 52.
    Ponticelli C, Zucchelli P, Passerini P, Cesana B. Methylprednisolone plus chlorambucil as compared with methylprednisolone alone for the treatment of idiopathic membranous nephropathy. The Italian Idiopathic Membranous Nephropathy Treatment Study Group. N Engl J Med. 1992;327(9):599–603.PubMedCrossRefGoogle Scholar
  53. 53.
    Ponticelli C, Zucchelli P, Imbasciati E, et al. Controlled trial of methylprednisolone and chlorambucil in idiopathic membranous nephropathy. N Engl J Med. 1984;310(15):946–50.PubMedCrossRefGoogle Scholar
  54. 54.
    Badsha H, Edwards CJ. Intravenous pulses of methylprednisolone for systemic lupus erythematosus. Semin Arthritis Rheum. 2003;32(6):370–7.PubMedCrossRefGoogle Scholar
  55. 55.
    van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int. 2002;13(10):777–87.PubMedCrossRefGoogle Scholar
  56. 56.
    Saag KG, Emkey R, Schnitzer TJ, et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-Induced Osteoporosis Intervention Study Group. N Engl J Med. 1998;339(5):292–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Linnebur SA, Milchak JL. Assessment of oral bisphosphonate use in elderly patients with varying degrees of kidney function. Am J Geriatr Pharmacother. 2004;2(4):213–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Miller PD, Roux C, Boonen S, Barton IP, Dunlap LE, Burgio DE. Safety and efficacy of risedronate in patients with age-related reduced renal function as estimated by the Cockcroft and Gault method: a pooled analysis of nine clinical trials. J Bone Miner Res. 2005;20(12):2105–15.PubMedCrossRefGoogle Scholar
  59. 59.
    Miller PD. Treatment of osteoporosis in chronic kidney disease and end-stage renal disease. Curr Osteoporos Rep. 2005;3(1):5–12.PubMedCrossRefGoogle Scholar
  60. 60.
    Houssiau FA. Cyclophosphamide in lupus nephritis. Lupus. 2005;14(1):53–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Radis CD, Kahl LE, Baker GL, et al. Effects of cyclophosphamide on the development of malignancy and on long-term survival of patients with rheumatoid arthritis. A 20-year followup study. Arthritis Rheum. 1995;38(8):1120–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Reinhold-Keller E, Beuge N, Latza U, et al. An interdisciplinary approach to the care of patients with Wegener’s granulomatosis: long-term outcome in 155 patients. Arthritis Rheum. 2000;43(5):1021–32.PubMedCrossRefGoogle Scholar
  63. 63.
    Faurschou M, Sorensen IJ, Mellemkjaer L, et al. Malignancies in Wegener’s granulomatosis: incidence and relation to cyclophosphamide therapy in a cohort of 293 patients. J Rheumatol. 2008;35(1):100–5.PubMedGoogle Scholar
  64. 64.
    Mok CC, Ying KY, Ng WL, et al. Long-term outcome of diffuse proliferative lupus glomerulonephritis treated with cyclophosphamide. Am J Med. 2006;119(4):355. e325–333.PubMedCrossRefGoogle Scholar
  65. 65.
    Boumpas DT, Austin III HA, Vaughan EM, Yarboro CH, Klippel JH, Balow JE. Risk for sustained amenorrhea in patients with systemic lupus erythematosus receiving intermittent pulse cyclophosphamide therapy. Ann Intern Med. 1993;119(5):366–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Rivkees SA, Crawford JD. The relationship of gonadal activity and chemotherapy-induced gonadal damage. JAMA. 1988;259(14):2123–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Balow JE, Boumpas DT, Fessler BJ, Austin III HA. Management of lupus nephritis. Kidney Int Suppl. 1996;53:S88–92.PubMedGoogle Scholar
  68. 68.
    Jayne D, Rasmussen N, Andrassy K, et al. A randomized trial of maintenance therapy for vasculitis associated with antineutrophil cytoplasmic autoantibodies. N Engl J Med. 2003;349(1):36–44.PubMedCrossRefGoogle Scholar
  69. 69.
    Contreras G, Pardo V, Leclercq B, et al. Sequential therapies for proliferative lupus nephritis. N Engl J Med. 2004;350(10):971–80.PubMedCrossRefGoogle Scholar
  70. 70.
    Boumpas DT, Austin III HA, Vaughn EM, et al. Controlled trial of pulse methylprednisolone versus two regimens of pulse cyclophosphamide in severe lupus nephritis. Lancet. 1992;340(8822):741–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Guillevin L, Cordier JF, Lhote F, et al. A prospective, multicenter, randomized trial comparing steroids and pulse cyclophosphamide versus steroids and oral cyclophosphamide in the treatment of generalized Wegener’s granulomatosis. Arthritis Rheum. 1997;40(12):2187–98.PubMedCrossRefGoogle Scholar
  72. 72.
    Ginzler EM, Dooley MA, Aranow C, et al. Mycophenolate mofetil or intravenous cyclophosphamide for lupus nephritis. N Engl J Med. 2005;353(21):2219–28.PubMedCrossRefGoogle Scholar
  73. 73.
    Appel GB, Contreras G, Dooley MA, et al. Mycophenolate mofetil versus cyclophosphamide for induction treatment of lupus nephritis. J Am Soc Nephrol. 2009;20(5):1103–12.PubMedCrossRefGoogle Scholar
  74. 74.
    A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. The Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. Transplantation. 1996;61(7):1029–37.Google Scholar
  75. 75.
    Hiemstra TF, Walsh M, Mahr A, et al. Mycophenolate mofetil vs azathioprine for remission maintenance in antineutrophil cytoplasmic antibody-associated vasculitis: a randomized controlled trial. JAMA. 2010;304(21):2381–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Dooley MA, Jayne D, Ginzler EM, et al. Mycophenolate versus azathioprine as maintenance therapy for lupus nephritis. N Engl J Med. 2011;365(20):1886–95.PubMedCrossRefGoogle Scholar
  77. 77.
    Meyrier A, Noel LH, Auriche P, Callard P. Long-term renal tolerance of cyclosporin A treatment in adult idiopathic nephrotic syndrome. Collaborative Group of the Societe de Nephrologie. Kidney Int. 1994;45(5):1446–56.PubMedCrossRefGoogle Scholar
  78. 78.
    Praga M, Barrio V, Juarez GF, Luno J. Tacrolimus monotherapy in membranous nephropathy: a randomized controlled trial. Kidney Int. 2007;71(9):924–30.PubMedCrossRefGoogle Scholar
  79. 79.
    Rangan GK, Coombes JD. Renoprotective effects of sirolimus in non-immune initiated focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2007;22(8):2175–82.PubMedCrossRefGoogle Scholar
  80. 80.
    Tumlin JA, Miller D, Near M, Selvaraj S, Hennigar R, Guasch A. A prospective, open-label trial of sirolimus in the treatment of focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. 2006;1(1):109–16.PubMedCrossRefGoogle Scholar
  81. 81.
    Cho ME, Hurley JK, Kopp JB. Sirolimus therapy of focal segmental glomerulosclerosis is associated with nephrotoxicity. Am J Kidney Dis. 2007;49(2):310–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Jones RB, Tervaert JW, Hauser T, et al. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N Engl J Med. 2010;363(3):211–20.PubMedCrossRefGoogle Scholar
  83. 83.
    Stone JH, Merkel PA, Spiera R, et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med. 2010;363(3):221–32.PubMedCrossRefGoogle Scholar
  84. 84.
    Fervenza FC, Cosio FG, Erickson SB, et al. Rituximab treatment of idiopathic membranous nephropathy. Kidney Int. 2008;73(1):117–25.PubMedCrossRefGoogle Scholar
  85. 85.
    Fervenza FC, Abraham RS, Erickson SB, et al. Rituximab therapy in idiopathic membranous nephropathy: a 2-year study. Clin J Am Soc Nephrol. 2010;5(12):2188–98.PubMedCrossRefGoogle Scholar
  86. 86.
    Dammacco F, Tucci FA, Lauletta G, et al. Pegylated interferon-alpha, ribavirin, and rituximab combined therapy of hepatitis C virus-related mixed cryoglobulinemia: a long-term study. Blood. 2010;116(3):343–53.PubMedCrossRefGoogle Scholar
  87. 87.
    Saadoun D, Resche Rigon M, Sene D, et al. Rituximab plus Peg-interferon-alpha/ribavirin compared with Peg-interferon-alpha/ribavirin in hepatitis C-related mixed cryoglobulinemia. Blood. 2010;116(3):326–34. quiz 504–325.PubMedCrossRefGoogle Scholar
  88. 88.
    Johnson JP, Moore Jr J, Austin III HA, Balow JE, Antonovych TT, Wilson CB. Therapy of anti-glomerular basement membrane antibody disease: analysis of prognostic significance of clinical, pathologic and treatment factors. Medicine (Baltimore). 1985;64(4):219–27.Google Scholar
  89. 89.
    Jayne DR, Gaskin G, Rasmussen N, et al. Randomized trial of plasma exchange or high-dosage methylprednisolone as adjunctive therapy for severe renal vasculitis. J Am Soc Nephrol. 2007;18(7):2180–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Bell WR, Braine HG, Ness PM, Kickler TS. Improved survival in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Clinical experience in 108 patients. N Engl J Med. 1991;325(6):398–403.PubMedCrossRefGoogle Scholar
  91. 91.
    Stegmayr B, Ptak J, Wikstrom B. World apheresis registry report. Transfus Apher Sci. 2007;36(1):13–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Boros P, Gondolesi G, Bromberg JS. High dose intravenous immunoglobulin treatment: mechanisms of action. Liver Transpl. 2005;11(12):1469–80.PubMedCrossRefGoogle Scholar
  93. 93.
    Hotta O, Ishida A, Kimura T, Taguma Y. Improvements in treatment strategies for patients with antineutrophil cytoplasmic antibody-associated rapidly progressive glomerulonephritis. Ther Apher Dial. 2006;10(5):390–5.PubMedCrossRefGoogle Scholar
  94. 94.
    Jayne DR, Chapel H, Adu D, et al. Intravenous immunoglobulin for ANCA-associated systemic vasculitis with persistent disease activity. QJM. 2000;93(7):433–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Sherer Y, Shoenfeld Y. Intravenous immunoglobulin for immunomodulation of systemic lupus erythematosus. Autoimmun Rev. 2006;5(2):153–5.PubMedCrossRefGoogle Scholar
  96. 96.
    Levy JB, Pusey CD. Nephrotoxicity of intravenous immunoglobulin. QJM. 2000;93(11):751–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Division of NephrologyCentre Hospitalier Universitariare de QuebécQuebec CityCanada
  2. 2.University of TorontoTorontoCanada

Personalised recommendations