Skip to main content

Near-Field Wireless Power and Data Transmission to Implantable Neuroprosthetic Devices

  • Chapter
  • First Online:

Abstract

This chapter describes the fundamental principles of near-field wireless telemetry through inductive links and provides insight with respect to the choice of design parameters, carrier frequency, data modulation schemes, methods of theoretical analysis, and electromagnetic safety. After presenting the simplified models for the inductance and mutual coupling among conductive loops, non-resonant and resonant inductive links are described to show the basic idea behind magnetic resonance in inductive power transmission. The power transfer efficiency (PTE) for conventional inductive links has been derived based on the lumped circuit parameters, which leads to a simplified design procedure to optimize the coil geometries for achieving the highest PTE. Different carrier-based modulation schemes are presented followed by a brief discussion on single carrier versus multi-carrier telemetry links for high bandwidth and robust data transmission in the presence of the power carrier. Finally, a new carrier-less modulation scheme called pulse harmonic modulation (PHM) has been proposed, which can offer high data rate in implantable medical devices (IMDs) without dissipating much power on the implantable side.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W. Greatbatch, C.F. Holmes, History of implantable devices. IEEE Eng. Med. Biol. 10, 38–42 (1991)

    Article  CAS  Google Scholar 

  2. D.J. Woolons, To beat or not to beat: the history and development of heart pacemakers. IEE J. Eng. Sci. Educ. 4(6), 259–268 (1995)

    Article  Google Scholar 

  3. R. Allan, Medtronic sets the pace with implantable electronics. Electron. Des. 51(24), 52–56 (2003)

    Google Scholar 

  4. Boston Scientific Corporation, PrecisionPlus spinal cord stimulator. http://www.controlyourpain.com/howprecisionworks.asp

  5. A.L. Benabid, B. Wallace, J. Mitrofanis, C. Xia, B. Piallat, V. Fraix, A. Batir, P. Krack, P. Pollak, F. Berger, Therapeutic electrical stimulation of the central nervous system. C. R. Biol. 328, 177–186 (2005). www.sciencedirect.com

    Article  PubMed  Google Scholar 

  6. F.A. Spelman, The past, present, and future of cochlear prostheses. IEEE Eng. Med. Biol. 18, 27–33 (1999)

    Article  CAS  Google Scholar 

  7. P.C. Loizou, Mimicking the human ear. IEEE Signal Process. Mag. 15, 101–130 (1998)

    Article  Google Scholar 

  8. J.P. Rauschecker, R.V. Shannon, Sending sound to the brain. Science 295, 1025–1029 (2002)

    Article  PubMed  CAS  Google Scholar 

  9. Conclusions of Discussions at 2003 Conference on Implantable Auditory Prostheses, Session 7, Asilomar, August 2003

    Google Scholar 

  10. Cochlear Corporation, Cochlear Freedom Implant. http://www.cochlearamericas.com/Products/23.asp

  11. Advanced Bionics Corporation, HiRes 90 K Implant. http://www.advancedbionics.com/us/en/products/hires_90k_implant.html

  12. J.D. Weiland, M.S. Humayun, A biomimetic retinal stimulating array. IEEE Eng. Med. Biol. Mag. 24, 14–21 (2005)

    Article  PubMed  Google Scholar 

  13. K. Chen, Z. Yang, L. Hoang, J. Weiland, M. Humayun, W. Liu, An integrated 256-channel epiretinal prosthesis. IEEE J. Solid-State Circ. 45(9), 1946–1956 (2010)

    Article  Google Scholar 

  14. D.B. Shire et al., Development and implantation of a minimally invasive wireless subretinal neurostimulator. IEEE Trans. Biomed. Eng. 56(10), 2502–2511 (2009)

    Article  PubMed  Google Scholar 

  15. P. Walter, Z.F. Kisvarday, M. Gortz, N. Alteheld, G. Rossler, T. Stieglitz, U.T. Eysel, Cortical activation via an implanted wireless retinal prosthesis. Invest. Ophth. Vis. Sci. 46, 1780–1785 (2005)

    Article  Google Scholar 

  16. E. Margalit, M. Maia, J.D. Weiland, R.J. Greenberg, G.Y. Fujii, G. Torres, D.V. Piyathaisere, T.M. O’Hearn, W. Liu, G. Lazzi, G. Dagnelie, D.A. Scribner, E. de Juan, M.S. Humayun, Retinal prosthesis for the blind. Surv. Ophthalmol. 47, 335–356 (2002)

    Article  PubMed  Google Scholar 

  17. R.A. Normann, Sight restoration for individuals with profound blindness, July 2011. http://archive.is/BTNaC

  18. R.A. Normann, E.M. Maynard, K.S. Guilloty, D.J. Warren, Cortical implants for the blind. IEEE Spectr. 33, 54–59 (1996)

    Article  Google Scholar 

  19. R.A. Normann, Visual neuroprosthetics – functional vision for the blind. IEEE Eng. Med. Biol. 14, 77–63 (1995)

    Article  Google Scholar 

  20. E. Zrenner, Will retinal implants restore vision? Science 295, 1022–1025 (2002)

    Article  PubMed  CAS  Google Scholar 

  21. M.A.L. Nicolelis, Brain–machine interfaces to restore function and probe neural circuits. Nat. Rev. Neurosci. 4, 417–422 (2003)

    Article  PubMed  CAS  Google Scholar 

  22. M.A.L. Nicolelis, Actions from thoughts. Nature 409, 403–407 (2001)

    Article  PubMed  CAS  Google Scholar 

  23. W. Craelius, The bionic man: restoring mobility. Science 295, 1018–1021 (2002)

    Article  PubMed  CAS  Google Scholar 

  24. W.F. Agnew, D.B. McCreery (eds.), Neural Prosthesis; Fundamental Studies (Prentice-Hall, Upper Saddle River, 1990)

    Google Scholar 

  25. J.K. Chapin, K.A. Moxon (eds.), Neural Prostheses for Restoration of Sensory and Motor Function (CRC, Boca Raton, 2000)

    Google Scholar 

  26. T.A. Kuiken, L.A. Miller, R.D. Lipschutz, B.A. Lock, K. Stubblefield, P.D. Marasco, P. Zhou, G.A. Dumanian, Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369, 371–380 (2007)

    Article  PubMed  Google Scholar 

  27. 60-Minutes, Revolutionizing Prosthetics. http://cnettv.cnet.com/60-minutes-revolutionizing-prosthetics/9742-1_53-50005779.html

  28. J. Fishman, Bionics. Nat. Geograph. (2010). http://ngm.nationalgeographic.com/2010/01/bionics/fischman-text

  29. K.E. Jones, R.A. Normann, An advanced demultiplexing system for physiological stimulation. IEEE Trans. Biomed. Eng. 44, 1210–1220 (1997)

    Article  PubMed  CAS  Google Scholar 

  30. M.S. Humayun et al., Pattern electrical stimulation of the human retina. Vis. Res. 39, 2569–2576 (1999)

    Article  PubMed  CAS  Google Scholar 

  31. M.S. Humayun et al., Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vis. Res. 43, 2573–2581 (2003)

    Article  PubMed  Google Scholar 

  32. K. Cha, K. Horch, R.A. Normann, Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system. Ann. Biomed. Eng. 20, 439–449 (1992)

    Article  PubMed  CAS  Google Scholar 

  33. R.W. Thompson, G.D. Barnett, M.S. Humayun, G. Dagnelie, Facial recognition using simulated prosthetic pixelized vision. Invest. Ophth. Vis. Sci. 44(11), 5035–5042 (2003)

    Article  Google Scholar 

  34. J.S. Hayes, J.T. Yin, D.V. Piyathaisere, J. Weiland, M.S. Humayun, G. Dagnelie, Visually guided performance of simple tasks using simulated prosthetic vision. Artif. Organs 27(11), 1016–1028 (2003)

    Article  PubMed  Google Scholar 

  35. S.B. Lee, H.M. Lee, M. Kiani, U. Jow, M. Ghovanloo, An inductively-powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications. IEEE Trans. Biomed. Circ. Syst. 4(6), 360–371 (2010)

    Article  Google Scholar 

  36. M. Yin, M. Ghovanloo, A flexible 32-channel simultaneous wireless neural recording system with adjustable resolution, in Digest of Technical Papers IEEE International Solid State Circuits Conference, February 2009, pp. 432–433

    Google Scholar 

  37. M. Yin, M. Ghovanloo, A low-noise clockless simultaneous 32-channel wireless neural recording system with adjustable resolution. Analog Integr. Circ. Sig. Process 66(3), 417–431 (2011)

    Article  Google Scholar 

  38. M.S. Chae, Z. Yang, M.R. Yuce, L. Hoang, W. Liu, A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans. Neural Syst. Rehabil. Eng. 17(4), 312–321 (2009)

    Article  PubMed  Google Scholar 

  39. H. Miranda, V. Gilja, C.A. Chestek, K.V. Shenoy, T.H. Meng, HermesD: a high-rate long-range wireless transmission system for simultaneous multichannel neural recording applications. IEEE Trans. Biomed. Circ. Syst. 4(3), 181–191 (2010)

    Article  Google Scholar 

  40. M. Rizk, C.A. Bossetti, T.A. Jochum, S.H. Callender, M.A.L. Nicolelis, D.A. Turner, P.D. Wolf, A fully implantable 96-channel neural data acquisition system. J. Neural Eng. 6(2), 026002 (2009)

    Article  PubMed Central  PubMed  Google Scholar 

  41. K. Finkenzeller, RFID-Handbook, 2nd edn. (Wiley, Hoboken, 2003)

    Book  Google Scholar 

  42. A. Karalis, J. Joannopoulos, M. Soljacic, Efficient wireless non-radiative mid-range energy transfer. Ann. Phys. 323, 34–48 (2007)

    Article  Google Scholar 

  43. J.M. Fernandez, J.A. Borras, Contactless battery charger with wireless control link. U.S. Patent Number 6,184,651, February 2001

    Google Scholar 

  44. L. Ka-Lai, W. Hay, P. Beart, Contact-less power transfer. U.S. Patent Number 7,042,196, May 2006

    Google Scholar 

  45. Near Field Communication Forum, http://www.nfc-forum.org/home/

  46. Wireless Power Consortium, http://www.wirelesspowerconsortium.com/

  47. M.N.O. Sadiku, Elements of Electromagnetics, 4th edn. (Oxford University Press, New York, 2007)

    Google Scholar 

  48. U.S. Inan, A.S. Inan, Engineering Electromagnetics, 1st edn. (Prentice-Hall, Upper Saddle River, 1998)

    Google Scholar 

  49. J.D. Kraus, D.A. Fleisch, Electromagnetics, 5th edn. (McGraw-Hill, New York, 1999)

    Google Scholar 

  50. S.W. Wentworth, Fundamentals of Electromagnetics with Engineering Applications (Wiley, New York, 2004)

    Google Scholar 

  51. C.M. Zierhofer, E.S. Hochmair, Geometric approach for coupling enhancement of magnetically coupled coils. IEEE Trans. Biomed. Eng. 43, 708–714 (1996)

    Article  PubMed  CAS  Google Scholar 

  52. F.W. Grover, Inductance Calculations Working Formulas and Tables (D. Van Nostrand Company, New York, 1946)

    Google Scholar 

  53. F.E. Terman, Radio Engineers Handbook (McGraw-Hill, New York, 1943)

    Google Scholar 

  54. FastHenry-2, Fast Field Solvers. http://www.fastfieldsolvers.com/

  55. ANSYS, 3D Full-wave Electromagnetic Field Simulation. http://www.ansoft.com/products/hf/hfss/

  56. M. Soma, D.G. Galbraith, R.L. White, Radio-frequency coils in implantable devices: misalignment analysis and design procedure. IEEE Trans. Biomed. Eng. 34, 276–282 (1987)

    Article  PubMed  CAS  Google Scholar 

  57. R.R. Harrison, Designing efficient inductive power links for implantable devices, in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’07), May 2007, pp. 2080–2083

    Google Scholar 

  58. M. Kiani, U. Jow, M. Ghovanloo, Design and optimization of a 3-coil inductive link for efficient wireless power transmission. IEEE Trans. Biomed. Circ. Syst. 5, 579–591 (2011)

    Google Scholar 

  59. M.W. Baker, R. Sarpeshkar, Feedback analysis and design of RF power links for low-power bionic systems. IEEE Trans. Biomed. Circ. Syst. 1(1), 28–38 (2007)

    Article  CAS  Google Scholar 

  60. N.O. Sokal, A.D. Sokal, Class-E—a new class of high-efficiency tuned single-ended switching power amplifiers. IEEE J. Solid-State Circ. SC-10(6), 168–176 (1975)

    Article  Google Scholar 

  61. F.H. Raab, N.O. Sokal, Transistor power losses in the Class E tuned power amplifier. IEEE J. Solid-State Circ. SC-13, 912–914 (1978)

    Article  Google Scholar 

  62. F.H. Raab, Effects of circuit variations on the Class E tuned power amplifier. IEEE J. Solid-State Circ. SC-13, 239–247 (1978)

    Article  Google Scholar 

  63. C.M. Zierhofer, E.S. Hochmair, High-efficiency coupling-insensitive transcutaneous power and data transmission via an inductive link. IEEE Trans. Biomed. Eng. 37, 716–722 (1990)

    Article  PubMed  CAS  Google Scholar 

  64. G.A. Kendir et al., An optimal design methodology for inductive power link with class-E amplifier. IEEE Trans. Circ. Syst. I 52, 857–866 (2005)

    Article  Google Scholar 

  65. P.R. Troyk, M.A.K. Schwan, Closed-loop class E transcutaneous power and data link for MicroImplants. IEEE Trans. Biomed. Eng. 39(6), 589–599 (1992)

    Article  PubMed  CAS  Google Scholar 

  66. M.K. Kazimierczuk, K. Puczko, Exact analysis of class E tuned power amplifier at any Q and switch duty cycle. IEEE Trans. Circ. Syst. CAS-34(2), 149–159 (1987)

    Article  Google Scholar 

  67. B. Ziaie, S.C. Rose, M.D. Nardin, K. Najafi, A self-oscillating detuning-insensitive class-E transmitter for implantable microsystems. IEEE Trans. Biomed. Eng. 48, 397–400 (2001)

    Article  PubMed  CAS  Google Scholar 

  68. A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher, M. Soljacic, Wireless power transfer via strongly coupled magnetic resonances. Sci. Exp. 317, 83–86 (2007)

    Article  CAS  Google Scholar 

  69. R.E. Hamam, A. Karalis, J.D. Joannopoulos, M. Soljacic, Efficient weakly-radiative wireless energy transfer: an EIT-like approach. Ann. Phys. 324, 1783–1795 (2009)

    Article  CAS  Google Scholar 

  70. A.K. RamRakhyani, S. Mirabbasi, M. Chiao, Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans. Biomed. Circ. Syst. 5, 48–63 (2011)

    Article  CAS  Google Scholar 

  71. C.R. Sullivan, Optimal choice for number of strands in a Litz-wire transformer winding. IEEE Trans. Power Electron. 14(2), 283–291 (1999)

    Article  Google Scholar 

  72. F. Tourkhani, P. Viarouge, Accurate analytical model of winding losses in round Litz wire windings. IEEE Trans. Magn. 37(1), 538–543 (2001)

    Article  Google Scholar 

  73. U.M. Jow, M. Ghovanloo, Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission. IEEE Trans. Biomed. Circ. Syst. 1, 193–202 (2007)

    Article  Google Scholar 

  74. U. Jow, M. Ghovanloo, Modeling and optimization of printed spiral coils in air, saline, and muscle tissue environments. IEEE Trans. Biomed. Circ. Syst. 3(5), 339–347 (2009)

    Article  Google Scholar 

  75. J.C. Lin, Computer methods for field intensity predictions, in CRC Handbook of Biological Effects of Electromagnetic Fields, ed. by C. Polk, E. Postow (CRC, Boca Raton, 1986), pp. 273–313 (Chapter 2)

    Google Scholar 

  76. K. Gosalia, J. Weiland, M. Humayun, G. Lazzi, Thermal elevation in the human eye and head due to the operation of a retinal prosthesis. IEEE Trans. Biomed. Eng. 51, 1469–1477 (2004)

    Article  PubMed  Google Scholar 

  77. IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, 1999

    Google Scholar 

  78. H. McDermott, An advanced multiple channel cochlear implant. IEEE Trans. Biomed. Eng. 36(7), 789–797 (1989)

    Article  PubMed  CAS  Google Scholar 

  79. M. Kiani, M. Ghovanloo, An RFID-based closed loop wireless power transmission system for biomedical applications. IEEE Trans. Circ. Syst. II 57(4), 260–264 (2010)

    Article  Google Scholar 

  80. J.A. Von Arx, K. Najafi, A wireless single-chip telemetry-powered neural stimulation system, in Digest IEEE International Solid-State Circuits Conference, February 1999, pp. 214–215

    Google Scholar 

  81. M. Ghovanloo, K. Beach, K.D. Wise, K. Najafi, A BiCMOS wireless interface chip for micromachined stimulating microprobes, in Proceedings of the IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, May 2002, pp. 277–282

    Google Scholar 

  82. M. Ghovanloo, K. Najafi, A modular 32-site wireless neural stimulation microsystem. IEEE J. Solid-State Circ. 39(12), 2457–2466 (2004)

    Article  Google Scholar 

  83. K. Arabi, M.A. Sawan, Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation. IEEE Trans. Rehabil. Eng. 7(2), 204–214 (1999)

    Article  PubMed  CAS  Google Scholar 

  84. C.M. Zierhofer, I.J. Hochmair-Desoyer, E.S. Hochmair, Electronic design of a cochlear implant for multichannel high-rate pulsatile stimulation strategies. IEEE Trans. Rehabil. Eng. 3, 112–116 (1995)

    Article  Google Scholar 

  85. M. Sawan, F. Duval, M.M. Hassouna, J. Li, M.M. Elhilahi, J. Lachance, M. Leclair, S. Pourmehdi, J. Mouine, Computerized transcutaneous control of a multichannel implantable urinary prosthesis. IEEE Trans. Biomed. Eng. 39(6), 600–609 (1992)

    Article  PubMed  CAS  Google Scholar 

  86. S. Boyer, M. Sawan, M. Abdel-Gawad, S. Robin, M.M. Alhilali, Implantable selective stimulator to improve bladder voiding: design and chronic experiment in dogs. IEEE Trans. Rehabil. Eng. 8(4), 789–797 (2000)

    Article  Google Scholar 

  87. B. Ziaie, M.D. Nardin, A.R. Coghlan, K. Najafi, A single-channel implantable microstimulator for functional neuromuscular stimulation. IEEE Trans. Biomed. Eng. 44(10), 909–920 (1997)

    Article  PubMed  CAS  Google Scholar 

  88. B. Smith, Z. Tang, M.W. Johnson, S. Pourmehdi, M.M. Gazdik, J.R. Buckett, P.H. Peckham, An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. IEEE Trans. Biomed. Eng. 45(4), 463–475 (1998)

    Article  PubMed  CAS  Google Scholar 

  89. W. Liu et al., A neuro-stimulus chip with telemetry unit for retinal prosthetic device. IEEE J. Solid-State Circ. 35, 1487–1497 (2000)

    Article  Google Scholar 

  90. G. Gudnason, E. Bruun, A chip for an implantable neural stimulator, in Analog Integrated Circuits and Signal Processing, vol. 22 (Kluwer Academic, Boston, 1999), pp. 81–89

    Google Scholar 

  91. G.J. Suaning, N.H. Lovell, CMOS neuro-stimulation ASIC with 100 channels, scalable output, and bidirectional radio-freq. telemetry. IEEE Trans. Biomed. Eng. 48, 248–260 (2001)

    Article  PubMed  CAS  Google Scholar 

  92. Agilent technologies educator’s corner, AM Fundamentals. http://www.educatorscorner.com/index.cgi?CONTENT_ID=2551

  93. P. Raker, L. Connell, T. Collins, D. Russell, Secure contactless smartcard ASIC with DPA protection. IEEE J. Solid-State Circ. 36, 559–565 (2001)

    Article  Google Scholar 

  94. U. Kaiser, W. Steinhaugen, A low-power transponder IC for high-performance identification systems. IEEE J. Solid-State Circ. 30, 306–310 (1995)

    Article  Google Scholar 

  95. A. Abrial, J. Bouvier, M. Renaudin, P. Senn, P. Vivet, A new contactless smart card IC using an on-chip antenna and an asynchronous microcontroller. IEEE J. Solid-State Circ. 36, 1101–1107 (2001)

    Article  Google Scholar 

  96. Agilent technologies educator’s corner, FM Fundamentals. http://www.educatorscorner.com/index.cgi?CONTENT_ID=2551

  97. D.G. Galbraith, M. Soma, R.L. White, A wide-band efficient inductive transdermal power and data link with coupling insensitive gain. IEEE Trans. Biomed. Eng. 34, 265–275 (1987)

    Article  PubMed  CAS  Google Scholar 

  98. P.R. Troyk, G.A. DeMichele, Inductively-coupled power and data link for neural prostheses using a class-E oscillator and FSK modulation, in Proceedings of the IEEE 25th EMBS Conference, September 2003, pp. 3376–3379

    Google Scholar 

  99. M. Ghovanloo, K. Najafi, High data rate frequency shift keying demodulation for wireless biomedical implants. IEEE Trans. Circ. Syst. I 51(12), 2374–2383 (2004)

    Article  Google Scholar 

  100. M. Sawan, Y. Hu, J. Coulombe, Wireless smart implants dedicated to multichannel monitoring and microstimulation. IEEE Circ. Syst. Mag. 5, 21–39 (2005)

    Article  Google Scholar 

  101. C. Marschner, S. Rehfuss, D. Peters, H. Bolte, R. Laur, A novel circuit concept for PSK-demodulation in passive telemetric systems. Microelectron. J. 33, 69–75 (2002)

    Article  Google Scholar 

  102. Z. Tang, B. Smith, J.H. Schild, P.H. Peckham, Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator. IEEE Trans. Biomed. Eng. 42, 524–528 (1995)

    Article  Google Scholar 

  103. L. Zhou, N. Donaldson, A fast passive data transmission method for eng telemetry. Neuromodulation 6(2), 116–121 (2003)

    Article  PubMed  Google Scholar 

  104. M. Catrysse, B. Hermans, R. Puers, An inductive power system with integrated bi-directional data-transmission. Sensor Actuator A 115, 221–229 (2004)

    Article  CAS  Google Scholar 

  105. S. Mandal, R. Sarpeshkar, Power-efficient impedance-modulation wireless data links for biomedical implants. IEEE Trans. Biomed. Circ. Syst. 2(4), 301–315 (2008)

    Article  CAS  Google Scholar 

  106. G. Bawa, M. Ghovanloo, An active high power conversion efficiency rectifier with built-in dual-mode back telemetry in standard CMOS technology. IEEE Trans. Biomed. Circ. Syst. 2(3), 184–192 (2008)

    Article  CAS  Google Scholar 

  107. I. Obeid, J.C. Morizio, K.A. Moxon, M.A.L. Nicolelis, P.D. Wolf, Two multichannel integrated circuits for neural recording and signal processing. IEEE Trans. Biomed. Eng. 50, 255–258 (2003)

    Article  PubMed  Google Scholar 

  108. E.S. Hawley, E.L. Hargreaves, J.L. Kubie, B. Rivard, R.U. Muller, Telemetry system for reliable recording of action potentials from freely moving rats. Hippocampus 12, 505–513 (2002)

    Article  PubMed  Google Scholar 

  109. J. Morizio, P. Irazoqui, V. Go, J. Parmentier, A wireless headstage for neural prosthetics, in Proceedings of the Second International IEEE/EMBS Conference on Neural Engineering, March 2005, pp. 414–417

    Google Scholar 

  110. G.A. DeMichele, P.R. Troyk, Integrated multi-channel wireless biotelemetry system, in IEEE 25th EMBS Conference, September 2003, pp. 3372–3375

    Google Scholar 

  111. P. Irazoqui-Pastor, I. Mody, J.W. Judy, In-vivo EEG recording using a wireless implantable neural transceiver, in First IEEE EMBS Conference Neural Engineering, March 2003, pp. 622–625

    Google Scholar 

  112. P. Mohseni, K. Najafi, A fully integrated neural recording amplifier with dc input stabilization. IEEE Trans. Biomed. Eng. 51, 832–837 (2004)

    Article  PubMed  Google Scholar 

  113. N.M. Neihart, R.R. Harrison, Micropower circuits for bidirectional wireless telemetry in neural recording applications. IEEE Trans. Biomed. Eng. 52, 1950–1959 (2005)

    Article  PubMed  Google Scholar 

  114. J.H. Schulman et al., Battery powered Bion FES network, in Proceedings of the IEEE 26th EMBS Conference, September 2004, pp. 4283–4286

    Google Scholar 

  115. K. Gosalia, G. Lazzi, M. Humayun, Investigation of a microwave data telemetry link for a retinal prosthesis. IEEE Trans. Microw. Theory Tech. 52(8), 1925–1933 (2004)

    Article  Google Scholar 

  116. M. Ghovanloo, S. Atluri, A wideband power-efficient inductive wireless link for implantable microelectronic devices using multiple carriers. IEEE Trans. Circ. Syst. I 54(10), 2211–2221 (2007)

    Article  Google Scholar 

  117. M. Zhou, M.R. Yuce, W. Liu, A non-coherent DPSK data receiver with interference cancellation for dual-band transcutaneous telemetries. IEEE J. Solid-State Circ. 43, 2003–2012 (2008)

    Article  Google Scholar 

  118. U. Jow, M. Ghovanloo, Optimization of data coils in a multiband wireless link for neuroprosthetic implantable devices. IEEE Trans. Biomed. Circ. Syst. 4(5), 301–310 (2010)

    Article  Google Scholar 

  119. G. Simard, M. Sawan, D. Massicotte, High-speed OQPSK and efficient power transfer through inductive link for biomedical implants. IEEE Trans. Biomed. Circ. Syst. 4(3), 192–200 (2010)

    Article  Google Scholar 

  120. FCC Rules and Regulations, MICS Band Plan, pt. 95, 2003

    Google Scholar 

  121. F. Inanlou, M. Ghovanloo, Wideband near-field data transmission using pulse harmonic modulation. IEEE Trans. Circ. Syst. I 58(1), 186–195 (2011)

    Article  Google Scholar 

  122. F. Inanlou, M. Kiani, M. Ghovanloo, A 10.2 Mbps pulse harmonic modulation based transceiver for implantable medical devices. IEEE J. Solid-State Circ. 46, 1296–1306 (2011)

    Article  Google Scholar 

  123. N. Miura, D. Mizoguchi, M. Inoue, T. Sakurai, T. Kuroda, A 195-Gb/s 1.2-inductive inter-chip wireless superconnect with transmitter power control scheme for 3-D-stacked system in a package. IEEE J. Solid-State Circ. 41(1), 23–33 (2006)

    Article  Google Scholar 

  124. J. Yoo, S. Lee, H.J. Yoo, A 1.12 pJ/b inductive transceiver with a fault tolerant network switch for multi-layer wearable body area network applications. IEEE J. Solid-State Circ. 44(11), 2999–3010 (2009)

    Article  Google Scholar 

  125. S. Lee, K. Song, J. Yoo, H.J. Yoo, A low-energy inductive coupling transceiver with cm-range 50-Mbps data communication in mobile device applications. IEEE J. Solid-State Circ. 45(11), 2366–2374 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maysam Ghovanloo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kiani, M., Ghovanloo, M. (2014). Near-Field Wireless Power and Data Transmission to Implantable Neuroprosthetic Devices. In: Yang, Z. (eds) Neural Computation, Neural Devices, and Neural Prosthesis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8151-5_8

Download citation

Publish with us

Policies and ethics