Advertisement

Wireless Powering for Miniature Implantable Systems

  • John S. Ho
  • Alexander J. Yeh
  • Sanghoek Kim
  • Ada S. Y. Poon
Chapter

Abstract

The miniaturization of electronics has paved way for implantable devices at the scale of a millimeter or less. Progress in energy storage technologies, however, has been slower and the miniaturization of the power source remains unsolved. Wireless powering provides a potential solution in which electromagnetic energy is transferred from an external source. In this chapter, we analyze powering in the weakly coupled regime and discuss a specific example for a cardiac implant. For a weakly coupled device, we show that optimal powering occurs in the mid-field where power transfer occurs though a combination of inductive and radiative modes in tissue, in contrast to conventional inductive coupling.

Keywords

Complementary Metal Oxide Semiconductor Power Transfer Receiver Coil Specific Absorption Rate Wireless Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N.N. Donaldson, T.A. Perkins, Analysis of resonant coupled coils in the design of radio frequency transcutaneous links. Med. Biol. Eng. Comput. 21(5), 612–627 (1983)PubMedCrossRefGoogle Scholar
  2. 2.
    S. Gabriel, R.W. Lau, C. Gabriel, The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41(11), 2271–2293 (1996)Google Scholar
  3. 3.
    R.F. Harrington, Time-Harmonic Electromagnetic Fields (IEEE Press, New York, 2001)CrossRefGoogle Scholar
  4. 4.
    J.S. Ho, S. Kim, A.S.Y. Poon, Midfield Wireless Powering for Implantable Systems. Proc. IEEE 101(6), 1369–1378 (2013)Google Scholar
  5. 5.
    IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz. IEEE Standard C95.3-2002, 2002Google Scholar
  6. 6.
    J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 2001)Google Scholar
  7. 7.
    U. Jow, M. Ghovanloo, Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission. IEEE Trans. Biomed. Circ. Syst. 1(3), 193–202 (2007)CrossRefGoogle Scholar
  8. 8.
    S. Kim, J.S. Ho, L.Y. Chen, A.S.Y. Poon, Wireless power transfer to a cardiac implant. Appl. Phys. Lett. 101(7), 073701 (2012)Google Scholar
  9. 9.
    S. Kim, J.S. Ho, A.S.Y. Poon, Wireless power transfer to miniature implants: transmitter optimization. IEEE Trans. Antennas Propag. 60(10), 4838–4845 (2012)CrossRefGoogle Scholar
  10. 10.
    W.H. Ko, S.P. Liang, C.D.F. Fun, Design of radio-frequency powered coils for implant instruments. Med. Biol. Eng. Comput. 15, 634–640 (1977)PubMedCrossRefGoogle Scholar
  11. 11.
    A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher, M. Soljačić, Wireless power Transfer via strongly coupled magnetic resonances. Science 317(5834), 83–86 (2007)PubMedCrossRefGoogle Scholar
  12. 12.
    T. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd edn. (Cambridge University Press, Cambridge, 2004)Google Scholar
  13. 13.
    B. Lenaerts, R. Puers, An inductive power link for a wireless endoscope. Biosnes. Bioelectron. 22, 1390–1395 (2007)CrossRefGoogle Scholar
  14. 14.
    E.E. Orlova, J.N. Hovenier, T.O. Klaassen, I. Kašalynas, A.J.L. Adam, J.R. Gao, T.M. Klapwijk, B.S. Williams, S. Kumar, Q. Hu, J.L Reno, Antenna model for wire lasers. Phys. Rev. Lett. 96(17), 173904 (2006)Google Scholar
  15. 15.
    D.M. Pozar, Microwave Engineering (Wiley, New York, 2009)Google Scholar
  16. 16.
    A.K. RamRakhyani, S. Mirabbasi, Mu Chiao, Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans. Biomed. Circ. Syst. 5(1), 48–63 (2011)Google Scholar
  17. 17.
    B.I. Rapoport, J.T. Kedzierski, R. Sarpeshkar (2012) A glucose fuel cell for implantable brain–machine interfaces. PloS One 7(6), e38436 (2012)Google Scholar
  18. 18.
    E. Romero, R.O. Warrington, M.R. Neuman, Energy scavenging sources for biomedical sensors. Physiol. Meas. 30(9), R35–R62 (2009)PubMedCrossRefGoogle Scholar
  19. 19.
    L.S.Y. Wong, S. Hossain, A. Ta, J. Edvinsson, D.H. Rivas, H. Naas, A very low-power cmos mixed-signal ic for implantable pacemaker applications. IEEE J. Solid State Circ. 39(12), 2446–2456 (2004)CrossRefGoogle Scholar
  20. 20.
    G. Zubal, C.R. Harrell, E.O. Smith, Z. Rattner, G. Gindi, P.B. Hoffer, Computerized three-dimensional segmented human anatomy. Med. Phys. 21(2), 299–302 (1994)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • John S. Ho
    • 1
  • Alexander J. Yeh
    • 1
  • Sanghoek Kim
    • 1
  • Ada S. Y. Poon
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations