Material Selection for the Quantum Dot Intermediate Band Solar Cell

  • Steven Jenks
  • Robert Gilmore
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 15)


The main limitation of the conventional solar conversion device is that low energy photons cannot excite charge carriers to the conduction band and therefore do not contribute to the device’s current. Another limitation is that high energy photons are not efficiently used due to a poor match of the solar spectrum to the energy gap. However, when intermediate bands are introduced into the energy gap of a conventional device, low energy photons can be used to promote charge carriers in a stepwise manner to the conduction band and photons are better matched to the energy transitions between bands. Solar cells with intermediate bands can have conversion efficiencies that exceed thermodynamic limits of the conventional solar cells. A device based on the confined electron levels of quantum dots, called the quantum dot intermediate band solar cell, is a physical realization of the intermediate band solar cell. We discuss the design criteria for selecting materials for the quantum dot intermediate band solar cells. With the aid of the finite element method, we perform numerical simulations on two types of quantum dot geometry and identify optimal material systems that are considered candidates for the quantum dot intermediate band solar cell with efficiencies greater than 46 % for unconcentrated light and greater than 62 % for fully concentrated light. Materials considered in this work are the technologically important III–V semiconductors and their alloys.


Conduction Band Valence Band Barrier Material Fermi Energy Level Intermediate Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 169, 510–519 (1961)ADSCrossRefGoogle Scholar
  2. 2.
    Araujo, G.L., Marti, A.: Absolute limiting efficiencies for photovoltaic energy conversion. Sol. Energy Mater. Sol. Cell. 33, 213–240 (1994)CrossRefGoogle Scholar
  3. 3.
    Nelson, J.: The Physics of Solar Cells. Imperial College Press, London (2003)CrossRefGoogle Scholar
  4. 4.
    Luque, A., Marti, A.: Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels. Phys. Rev. Lett. 78, 5014–5017 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    Green, M.A.: Third Generation Photovoltaics. Springer, New York (2006)Google Scholar
  6. 6.
    Ballentine, L.E.: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)CrossRefMATHGoogle Scholar
  7. 7.
    Kittel, C.: Introduction to Solid State Physics. Wiley, Hoboken (2005)Google Scholar
  8. 8.
    Matagne, P., Leburton, J.P.: Quantum dots: artificial atoms and molecules. In: Bandyopadhyay S., Nalwa H.S. (eds.) Quantum Dots and Nanowires, p. 3. American Scientific, Stevenson Ranch (2003)Google Scholar
  9. 9.
    Anderson, N.G.: On quantum well solar cell efficiencies. Physica E 14, 126–131 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Luque, A., Marti, A.: Thermodynamic consistency of sub-bandgap absorbing solar cell proposals. IEEE Trans. Electron Dev. 49, 2118–2124 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Marti, A., Cuandra, L., Luque, A.: Quantum Dot Intermediate Band Solar Cell. Paper presented at the 28th IEEE photovoltaics specialist conference, Anchorage, Alaska, 15–22 September 2000Google Scholar
  12. 12.
    Luque, A., Marti, A.: A metallic intermediate band high efficiency solar cell. Prog. Photovoltaics Res. Appl. 9, 73–86 (2001)CrossRefGoogle Scholar
  13. 13.
    Gilmore, R.: Elementary Quantum Mechanics in One Dimension. John Hopkins, Baltimore (2004)MATHGoogle Scholar
  14. 14.
    Tersoff, J., Teichert, C., Lagally, M.G.: Self-organization in growth of quantum dot superlattices. Phys. Rev. Lett. 76, 1675–1678 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    Leonard, D., Krishnamurthy, M., Reaves, C.M., Denbaars, S.P., Petroff, P.M.: Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Appl. Phys. Lett. 63, 3203–3205 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    Notzel, R., Temmyo, J., Tamamura, T.: Self-organized growth of strained InGaAs quantum disks. Nature 369, 131–133 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    Nishi, K., Anan, T., Gomyo, A., Kohmoto, S., Sugou, S.: Spontaneous lateral alignment of In0. 25Ga0. 75As self-assembled quantum dots on (311)B GaAs grown by gas source molecular beam epitaxy. Appl. Phys. Lett. 70, 3579–3581 (1997)Google Scholar
  18. 18.
    Sears, K., Mokkapati, S., Tan, H.H., Jagadish, C.: In(Ga)As/GaAs quantum dots grown by MOCVD for opto-electronic device applications. In: Wang Z.M. (ed.) Self-Assembled Quantum Dots. Lecture Notes in Nanoscale Science and Technology, vol. 1, pp. 359–404. Springer, New York (2008)CrossRefGoogle Scholar
  19. 19.
    Levy, M., Honsberg C., Marti, A., Luque, A.: Quantum dot intermediate band solar cell material systems with negligible valence band offsets. Paper presented at the 31st IEEE photovoltaics specialist conference, Orlando, Florida, 3–7 January 2005Google Scholar
  20. 20.
    Jenks, S., Gilmore, R.: Quantum dot solar cell: materials that produce two intermediate bands. J. Renew. Sustain. Energ. 2, 013111–013120 (2010)CrossRefGoogle Scholar
  21. 21.
    Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5816–5875 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Miller, M.S., Malm, J.O., Pistol, M.E., Jeppesen, S., Kowalski, B., Georgsson, K., Samuelson, L.: Stacking InAs islands and GaAs layers: Strongly modulated one-dimensional electronic systems. J. Appl. Phys. 80, 3360–3365 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    Grundmann, M., Stier, O., Bimberg, D.: InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure. Phys. Rev. B 52, 11969–11981 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    Solomon, G.S., Trezza, J.A., Marshall, A.F., Harris, J.S.: Vertically aligned and electronically coupled growth induced InAs islands in GaAs. Phys. Rev. Lett. 76, 952–955 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    Xie, Q., Madhukar, A., Chen, P., Kobayashi, N.P.: Vertically self-organized InAs quantum box islands on GaAs (100). Phys. Rev. Lett. 75, 2542–2545 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    Moreno, M., Trampert, A., Jenichen, B., Daweritz, L., Ploog, K.H.: Correlation of structure and magnetism in GaAs with embedded Mn(Ga)As magnetic nanoclusters. J. Appl. Phys. 92, 4672–4678 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    Lenz, A., Timm, R., Eisele, H., Hennig, C., Becker, S.K., Sellin, R.L., Pohl, U.W., Bimberg, D., Dahne, M.: Reversed truncated cone composition distribution of In0. 8Ga0. 2As quantum dots overgrown by an In0. 1Ga0. 9As layer in a GAs matrix. J. Appl. Phys. 81, 5150–5152 (2002)Google Scholar
  28. 28.
    Bardeen, J., Shockley, W.: Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 80, 72–80 (1950)MathSciNetADSCrossRefMATHGoogle Scholar
  29. 29.
    Herring, C., Vogt, E.: Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101, 944–961 (1956)ADSCrossRefMATHGoogle Scholar
  30. 30.
    Bir, G.L., Pikus, G.E.: Symmetry and Strain Induced Effects in Semiconductors. Wiley, New York (1974)Google Scholar
  31. 31.
    Luttinger, J.M., Kohn, W.: Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97, 869–883 (1954)ADSCrossRefGoogle Scholar
  32. 32.
    Pikus, G.E., Bir, G.L.: Effect of deformation on the hole energy spectrum of germanium and silicon. Sov. Phys. Solid State 1, 1502–1517 (1960)MathSciNetGoogle Scholar
  33. 33.
    Chuang, S.L.: Physics of Optoelectronic Devices. Wiley, New York (1995)Google Scholar
  34. 34.
    Bahder, T.B.: Analytic dispersion relations near the Gamma point in strained zinc-blende crystals. Phys. Rev. B 45, 1629–1637 (1992)ADSCrossRefGoogle Scholar
  35. 35.
    Schödinger, E.: Quantization as an eigenvalue problem (part I). Ann. Phys. 79, 1–12 (1926)Google Scholar
  36. 36.
    Freund, L.: The mechanics of electronic materials. Int. J. Solid. Struct. 37, 185–196 (2000)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Chang, S.: The Physics of Photonic Devices. Wiley, Hoboken (2009)Google Scholar
  38. 38.
    Eshelby, J.D.: Distortion of a crystal by point imperfections. J. Appl. Phys. 25, 255–262 (1954)ADSCrossRefMATHGoogle Scholar
  39. 39.
    Eshelby, J.D.: The continuum theory of lattice defects. Solid State Phys. 3, 79–144 (1956)CrossRefGoogle Scholar
  40. 40.
    Kuo, M., Lin, T., Hong, K., Liao, B., Lee, H., Yu, C.: Two step strain analysis of self assembled InAs/GaAs quantum dots. Semicond. Sci. Tech. 21, 626–632 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    Boxberg, F., Tulkki, J.: Theory of the electronic structure and carrier dynamics of strain-induced (Ga,In)As quantum dots. Rep. Progr. Phys. 70, 1425–1471 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    Andreev, A., Downes, J., Faux, D., O’Reilly, E.: Strain distributions in quantum dots of arbitrary shape. J. Appl. Phys. 86, 297–305 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    Holm, M., Pistol, M., Pryor, C.: Calculations of the electronic structure of strained InAs quantum dots in InP. J. Appl. Phys. 92, 932–936 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    Pryor, C.: Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations. Phys. Rev. B 57, 7190–7195 (1998)ADSCrossRefGoogle Scholar
  45. 45.
    Varshni, Y.P.: Temperature dependence of the energy gap in semiconductors. Physica 34, 149–154 (1967)ADSCrossRefGoogle Scholar
  46. 46.
    Bosio, C., Staehli, J.L., Guzzi, M., Burri, G., Logan, R.A.: Direct-energy-gap dependence on Al concentration in AlGaAs. Phys. Rev. B 38, 3263–3268 (1988)ADSCrossRefGoogle Scholar
  47. 47.
    Bais, G., Cristofoli, A., Jabeen, F., Piccin M., Carlino, E., Rubini, S., Martelli, F., Franciosi, A.: InAsN/GaAsN quantum-dot and InGaNAs/GaAs quantum-well emitters: a comparison. Appl. Phys. Lett. 86, 233107–233110 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    Schumann, O., Geelhaar, L., Riechert, H., Cerva, H., Abstreiter, G.: Morphology and optical properties of InAsN quantum dots. J. Appl. Phys. 96, 2832–2840 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PhysicsDrexel UniversityPhiladelphiaUSA

Personalised recommendations