Skip to main content

Light-Induced Charge Carrier Dynamics at Nanostructured Interfaces Investigated by Ultrafast Electron Diffractive Photovoltammetry

  • Chapter
  • First Online:
Quantum Dot Solar Cells

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 15))

Abstract

We present an ultrafast photovoltammetry framework to investigate the surface charge carrier dynamics at the nanometer scale. This diffraction-based method utilizes the feature-gated nanomaterial diffraction pattern to identify the scattering sites and to deduce the associated charge dynamics from the nanocrystallographic refraction-shift observed in the ultrafast electron diffraction patterns. From applying this methodology on SiO2/Si interface, and surfaces decorated with nanoparticles and water–ice adsorbed layer, we are able to elucidate the localized charge injection, dielectric relaxation, and carrier diffusion, with direct resolution in the charge state and possibly correlated structural dynamics at these interfaces, which are central to nanoelectronics, photovoltaics, and photocatalysis development. These new results highlight the high sensitivity of the interfacial charge transfer to the nanoscale modification, environment, and surface plasmonics enhancement and demonstrate the diffraction-based ultrafast surface voltage probe as a unique and powerful method to resolve the nanometer scale charge carrier dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The shift in diffraction due to electron wavlength change in the materials, which is on the level of 3 ×10− 5 per 1 V in photovoltage for 30 keV electron beam, is small compared to refraction shift, which is on the 10− 2 level under the same condition.

  2. 2.

    The persistence length here refers to the length of the crystal in the sample that allow the probing electron to scatter coherently to form diffraction pattern. The persistence length can be limited by the size of the crystal, the coherence length of the probing electron, or the penetration depth of the probing electron, which ever is the smallest.

  3. 3.

    The electrostatics calculations were performed using the Charged Particle Toolkit software from Field Precision. The geometry was setup according to Fig. 13.22a, c. In both cases, a potential of \(V _{\mathrm{ s}} = -5\) V was imposed. For nanoparticle simulations, the relative permittivity of the dielectric layer was set to 2.5. The Si(111) was treated as a grounded metal because of the high carrier density under photoexcitation. The potential far away from the nanoparticle was set to 0. Electrons of 30 keV were initialized at different launch angles (1°–5°) and positions along the height of the dielectric layer (1/3, 1/2, and 2/3). The slab model calculations were also carried out with this software, with varying capacitor slab separations.

References

  1. Gratzel, M.: J. Photochem. Photobiol. C Photochem. Rev. 4, 145 (2003)

    Google Scholar 

  2. Haruta, M.: Catal. Today 36, 153 (1997)

    Google Scholar 

  3. Ashkenasy, G., Cahen, D., Cohen, R., Shanzer, A., Vilan, A.: Acc. Chem. Res. 35, 121 (2002)

    Google Scholar 

  4. Shipway, A., Katz, E., Willner, I.: Chem. Phys. Chem. 1, 18 (2000)

    Google Scholar 

  5. Milliron, D.J., Hughes, S.M., Cui, Y., Manna, L., Li, J.B., Wang, L.W., Alivisatos, A.P.: Nature 430, 190 (2004)

    ADS  Google Scholar 

  6. Luque, A., Marti, A., Nozik, A.J.: MRS Bull. 32, 236 (2007)

    Google Scholar 

  7. Leschkies, K.S., Divakar, R., Basu, J., Enache-Pommer, E., Boercker, J.E., Carter, C.B., Kortshagen, U.R., Norris, D.J., Aydil, E.S.: Nano Lett. 7, 1793 (2007)

    ADS  Google Scholar 

  8. Kongkanand, A., Tvrdy, K., Takechi, K., Kuno, M., Kamat, PV.: J. Am. Chem. Soc. 130, 4007 (2008)

    Google Scholar 

  9. Huang, S.Y., Schlichthorl, G., Nozik, A.J., Gratzel, M., Frank, A.J.: J. Phys. Chem. B 101, 2576 (1997)

    Google Scholar 

  10. Califano, M., Zunger, A., Franceschetti, A.: Appl. Phys. Lett. 84, 2409 (2004)

    ADS  Google Scholar 

  11. Bach, U., Lupo, D., Comte, P., Moser, J.E., Weissortel, F., Salbeck, J., Spreitzer, H., Gratzel, M.: Nature 395, 583 (1998)

    ADS  Google Scholar 

  12. Aroutiounian, V., Petrosyan, S., Khachatryan, A., Touryan, K.: J. Appl. Phys. 89, 2268 (2001)

    ADS  Google Scholar 

  13. Adams, D.M., Brus, L., Chidsey, C.E.D., Creager, S., Creutz, C., Kagan, C.R., Kamat, P.V., Lieberman, M., Lindsay, S., Marcus, R.A., et al.: J. Phys. Chem. B 107, 6668 (2003)

    Google Scholar 

  14. Aviram, A., Ratner, M.A.: Chem. Phys. Lett. 29, 277 (1974)

    ADS  Google Scholar 

  15. Avouris, P., Chen, Z., Perebeinos, V.: Nat. Nanotechnol. 2, 605 (2007)

    ADS  Google Scholar 

  16. Bezryadin, A., Dekker, C., Schmid, G.: Appl. Phys. Lett. 71, 1273 (1997)

    ADS  Google Scholar 

  17. Marcus, R., Sutin, N.: Biochim. Biophys. Acta 811, 265 (1985)

    Google Scholar 

  18. Chen, C.J.: Introduction to Scanning Tunneling Microscopy. Oxford University Press, Oxford (1993)

    Google Scholar 

  19. Datta, S.: Electronic Transport in Mescoscopic Systems. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  20. Anderson, N., Lian, T.: Annu. Rev. Phys. Chem. 56, 491 (2005)

    ADS  Google Scholar 

  21. Miller, R.J.D., McLendon, G.L., Nozik, A.J., Schmickler, W., Willig, F.: Surface Electron Transfer Processes. VCH Publishers, Inc., New York (1995)

    Google Scholar 

  22. Kubo, A., Onda, K., Petek, H., et al.: Nano Lett. 5, 1123 (2005)

    ADS  Google Scholar 

  23. Peng, P., Milliron, D.J., Hughes, S.M., Johnson, J.C., Alivisatos, A.P., Sakyally, R.J.: Nano Lett. 5, 1809 (2005)

    ADS  Google Scholar 

  24. Tanaka, S.-I.: J. Electron Spectros. Relat. Phenom. 185, 152 (2012)

    Google Scholar 

  25. Murdick, R.A., Raman, R.K., Murooka, Y., Ruan, C.-Y.: Phys. Rev. B 77, 245329 (2008)

    ADS  Google Scholar 

  26. Ruan, C.-Y., Murooka, Y., Raman, R.K., Murdick, R.A., Worhatch, R.J., Pell, A.: Micros. Microana. 15, 323 (2009)

    ADS  Google Scholar 

  27. Chang, K., Murdick, R.A., Tao, Z., Han, T.-R.T., Ruan, C.-Y.: Mod. Phys. Lett. B 25, 2099 (2011)

    ADS  MATH  Google Scholar 

  28. Ruan, C.-Y., Murooka, Y., Raman, R.K., Murdick, R.A.: Nano Lett. 7, 1290 (2007)

    ADS  Google Scholar 

  29. Yamamoto, N., Spence, J.C.H.: Thin Solid Films 104, 43 (1983)

    ADS  Google Scholar 

  30. Spence, J.C.H., Poon, H., Saldin, D.: Microsc. Microanal. 10, 128 (2004)

    ADS  Google Scholar 

  31. Braun, W.: Applied RHEED. Reflection High Energy Electron Diffraction During Crystal Growth. Springer, Berlin (1999)

    Google Scholar 

  32. Wang, Z.L.: Reflection Electron Microscopy and Spectroscopy for Surface Analysis. Cambridge University Press, New York (1996)

    Google Scholar 

  33. Ryan A.M.: Ph.D. thesis, Michigan State University, East Lansing (2009)

    Google Scholar 

  34. Aswal, D., Lenfant, S., Guerin, D., Yakhmi, J., Vuillaume, D.: Anal. Chim. Acta 568, 84 (2006)

    Google Scholar 

  35. Tian, W.D., Datta, S., Hong, S.H., Reifenberger, R., Henderson, J.I., Kubiak, C.P.: J. Chem. Phys. 109, 2874 (1998)

    ADS  Google Scholar 

  36. Chen, J., Reed, M., Rawlett, A., Tour, J.: Science 286, 1550 (1999)

    Google Scholar 

  37. Forrest, S.: Nature 428, 911 (2004)

    ADS  Google Scholar 

  38. Ranuarez, J.C., Deen, M.J., Chen, C.-H.: Microelectron. Reliab. 46, 1939 (2006)

    Google Scholar 

  39. Goldman, E.I., Kukharskaya, N.F., Zhdan, A.G.: Solid State Electron. 48, 831 (2004)

    ADS  Google Scholar 

  40. Chakraborty, G., Chattopadhyay, S., Sarkar, C.K., Pramanik, C.: J. Appl. Phys. 101, 024315 (2007)

    ADS  Google Scholar 

  41. Park, H., Zuo, J.M.: Appl. Phys. Lett. 94, 251103 (2009)

    ADS  Google Scholar 

  42. Raman, R.K., Tao, Z., Han, T.-R., Ruan, C.-Y.: Appl. Phys. Lett. 95, 181108 (2009)

    ADS  Google Scholar 

  43. Schfera, S., Lianga, W., Zewail, A.H.: Chem. Phys. Lett. 493, 11 (2010)

    ADS  Google Scholar 

  44. Dadap, J.I., Xu, Z., Hu, X.F., Downer, M.C., Russell, N.M., Ekerdt, J.G., Aktsipetrov, O.A.: Phys. Rev. B 56, 13367 (1997)

    ADS  Google Scholar 

  45. Malevich, V.L., Adomavicius, R., Krotkus, A.: C. R. Phys. 9, 130 (2008)

    ADS  Google Scholar 

  46. Alay, J.L., Hirose, M.: J. Appl. Phys. 81, 1606 (1997)

    ADS  Google Scholar 

  47. Hattori, T., Takahashi, K., Seman, M.B., Nohira, H., Hirose, K., Kamakura, N., Takata, Y., Shin, S., Kobayashi, K.: Appl. Surf. Sci. 212, 547 (2003)

    ADS  Google Scholar 

  48. Marsi, M., Belkhou, R., Grupp, C., Panaccione, G., Taleb-Ibrahimi, A., Nahon, L., Garzella, D., Nutarelli, D., Renault, E., Roux, R., Couprie, M.E., Billardon, M.: Phys. Rev. B 61, R5070 (2000)

    ADS  Google Scholar 

  49. Halas, N.J., Bokor, J.: Phys. Rev. Lett. 62, 1679 (1989)

    ADS  Google Scholar 

  50. Bokor, J., Halas, N.J.: IEEE J. Quantum Electron. 25, 2550 (1989)

    ADS  Google Scholar 

  51. Ruan, C.-Y., Vigliotti, F., Lobastov, V.A., Chen, S., Zewail, A.H.: Proc. Natl. Acad. Sxi. USA 101, 1123 (2004)

    ADS  Google Scholar 

  52. Sjodin, T., Petek, H., Dai, H.L.: Phys. Rev. Lett. 81, 5664 (1998)

    ADS  Google Scholar 

  53. Sokolowski-Tinten, K., Von Der Linde, D.: Phys. Rev. B 61, 2643 (2000)

    ADS  Google Scholar 

  54. Hebeisen, C.T., Sciaini, G., Harb, M., Ernstorfer, R., Kruglik, S.G., Miller, R.J.D.: Phys. Rev. B 78, 081403(R) (2008)

    Google Scholar 

  55. Sundaram, S.K., Mazur, E.: Nat. Mater. 1, 217 (2002)

    ADS  Google Scholar 

  56. Harb, M., Ernstorfer, R., Hebeisen, C.T., Sciaini, G., Peng, W., Dartigalongue, T., Eriksson, M.A., Lagally, M.G., Kruglik, S.G., Miller, R.J.D.: Phys. Rev. Lett. 100, 155504 (2008)

    ADS  Google Scholar 

  57. Kern, W., Poutinen, D.A.: RCA Rev. 31, 187 (1970)

    Google Scholar 

  58. Jellison, G.E., Modine, F.A.: Appl. Phys. Lett. 41, 180 (1982)

    ADS  Google Scholar 

  59. Chen, J.K., Tzou, D.Y., Beraun, J.E.: Int. J. Heat Mass Transf. 48, 501 (2005)

    Google Scholar 

  60. Cohen, R., Zenou, N., Cahen, D., Yitzchaik, S.: Chem. Phys. Lett. 279, 270 (1997)

    ADS  Google Scholar 

  61. Lee, C.H., Chang, R.K., Bloembergen, N.: Phys. Rev. Lett. 18, 167 (1967)

    ADS  Google Scholar 

  62. Chen, C.K., Heinz, T.F., Ricard, D., Shen, Y.R.: Phys. Rev. B 27, 1965 (1983)

    ADS  Google Scholar 

  63. Mihaychuk, J.G., Bloch, J., Liu, Y., van Driel, H.M.: Opt. Lett. 20, 2063 (1995)

    ADS  Google Scholar 

  64. Aktsipetrov, O.A., Fedyanin, A.A., Mishina, E.D., Rubtsov, A.N., van Hasselt, C.W., Devillers, M.A.C., Rasing, T.: Phys. Rev. B 54, 1825 (1996)

    ADS  Google Scholar 

  65. Baldelli, S., Eppler, A., Anderson, E., Shen, Y., Somorjai, G.: J. Chem. Phys. 113, 5432 (2000)

    ADS  Google Scholar 

  66. Mihaychuk, J.G., Shamir, N., van Driel, H.M.: Phys. Rev. B 59, 2164 (1999)

    ADS  Google Scholar 

  67. Scheidt, T., Rohwer, E.G., Neethling, P., von Bergmann, H.M., Stafast, H.: J. Appl. Phys. 104, 083712 (2008)

    ADS  Google Scholar 

  68. Jun, B., Schrimpf, R., Fleetwood, D., White, Y., Pasternak, R., Rashkeev, S., Brunier, F., Bresson, N., Fouillat, M., Cristoloveanu, S., et al.: IEEE Trans. Nucl. Sci. 51, 3231 (2004)

    ADS  Google Scholar 

  69. Tolk, N.H., Alles, M.L., Pasternak, R., Lu, X., Schrimpf, R.D., Fleetwood, D.M., Dolan, R.P., Standley, R.W.: Microelectron. Eng. 84, 2089 (2007)

    Google Scholar 

  70. Paul, S., Rotenberg, N., van Driel, H.M.: Appl. Phys. Lett. 93, 131102 (2008)

    ADS  Google Scholar 

  71. Klein, D.L., Roth, R., Lim, A.K.L., Alivisatos, A.P., McEuen, P.L.: Nature 389, 699 (1997)

    ADS  Google Scholar 

  72. Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F., Yan, Y.Q.: Adv. Mater. 15, 353 (2003)

    Google Scholar 

  73. Yin, Y., Alivisatos, A.P.: Nature 437, 664 (2005)

    ADS  Google Scholar 

  74. Schaller, R.D., Agranovich, V.M., Klimov, V.I.: Nat. Phys. 1, 189 (2005)

    Google Scholar 

  75. Raffaelle, R.P., Castro, S.L., Hepp, A.F., Bailey, S.G.: Prog. Photovolt. 10, 433 (2002)

    Google Scholar 

  76. Nozik, A.J.: Phys. E 14, 115 (2002)

    Google Scholar 

  77. Klimov, V.I., Mikhailovsky, A.A., Xu, S., Malko, A., Hollingsworth, J.A., Leatherdale, C.A., Eisler, H.J., Bawendi, M.G.: Science 290, 314 (2000)

    ADS  Google Scholar 

  78. Duan, X.F., Huang, Y., Agarwal, R., Lieber, C.M.: Nature 421, 241 (2003)

    ADS  Google Scholar 

  79. Pitsillides, C.M., Joe, E.K., Wei, X.B., Anderson, R.R., Lin, C.P.: Biophys. J. 84, 4023 (2003)

    Google Scholar 

  80. Schwartzberg, A.M., Zhang, J.Z.: J. Phys. Chem. C 112, 10323 (2008)

    Google Scholar 

  81. Li, G.H., Gray, K.A.: Chem. Phys. 339, 173 (2007)

    ADS  Google Scholar 

  82. Neacsu, C.C., Dreyer, J., Behr, N., Raschke, M.B.: Phys. Rev. B 73, 193406 (2006)

    ADS  Google Scholar 

  83. Novotny, L.: Phys. Today 47 (2011)

    Google Scholar 

  84. Catchpole, K.R., Polman, A.: Appl. Phys. Lett. 93, 191113 (2008)

    ADS  Google Scholar 

  85. Awazu, K., Fujimoki, M., Rockstuhl, C., Tominaga, J., Murakami, H., Ohki, Y., Yoshida, N., Watanabe, T.: J. Am. Chem. Soc. 130, 1676 (2008)

    Google Scholar 

  86. Sato, T., Ahmed, H., Brown, D., Johnson, B.: J. Appl. Phys. 82, 696 (1997)

    ADS  Google Scholar 

  87. Widawsky, J.R., Darancet, P., Neaton, J.B., Venkataraman, L.: Nano Lett. 12, 354 (2011)

    ADS  Google Scholar 

  88. Wang, Z., Carter, J.A., Lagutchev, A., Koh, Y.K., Seong, N.-H., Cahill, D.G., Dlott, D.D.: Science 317, 787 (2007)

    ADS  Google Scholar 

  89. Nie, S.M., Emery, S.R.: Science 275, 1102 (1997)

    Google Scholar 

  90. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Nature 424, 824 (2003)

    ADS  Google Scholar 

  91. Linic, S., Christopher, P., Ingram, D.B.: Nat. Mater. 10, 911 (2011)

    ADS  Google Scholar 

  92. Link, S., El-Sayed, M.A.: J. Phys. Chem. B 103, 4212 (1999)

    Google Scholar 

  93. Han, T.-R.T., Yuan, F., Szymanski, T.M., Ruan, C.-Y.: submitted for publication

    Google Scholar 

  94. Mahmoud, M.A., Chamanzar, M., Adibi, A., El-Sayed, M.A.: J. Am. Chem. Soc. 134, 6434 (2012)

    Google Scholar 

  95. Schertz, F., Schmelzeisen, M., Mohammadi, R., Kreiter, M., Elmers, H.-J., Schonhense, G.: Nano. Lett. 12, 1885 (2012)

    ADS  Google Scholar 

  96. Chen, H., Shao, L., Ming, T., Woo, K.C., Man, Y.C., Wang, J., Lin, H.-Q.: ACS Nano 8, 6754 (2011)

    Google Scholar 

  97. Harrison, W.A.: Phys. Rev. 123, 85 (1961)

    ADS  Google Scholar 

  98. Buttiker, M., Landauer, R.: Phys. Rev. Lett. 49, 1739 (1982)

    ADS  Google Scholar 

  99. Miranda, E., Sune, J.: Microelectron. Reliab. 44, 1 (2004)

    Google Scholar 

  100. Schenk, A., Heiser, G.: J. Appl. Phys. 81, 7900 (1997)

    ADS  Google Scholar 

  101. Cai, J., Sah, C.T.: J. Appl. Phys. 89, 2272 (2001)

    ADS  Google Scholar 

  102. Ranuarez, J.C., Deen, M.J., Chen, C.-H.: Microelectron. Reliab. 46, 1939 (2006)

    Google Scholar 

  103. Kaganov, M.I., Lifshitz, I.M., Tanatarov, L.V.: Sov. Phys. JETP USSR 4, 173 (1957)

    MATH  Google Scholar 

  104. Anisimov, S.I., Kapeliovich, B., Perelman, T.L.: Teoreticheskoi Fiziki 66, 776 (1974)

    Google Scholar 

  105. Qiu, T.Q., Tien, C.L.: J. Heat Transf. Trans. ASME 115, 835 (1993)

    Google Scholar 

  106. Chen, J.K., Beraun, J.E.: Numer. Heat Transf. Part A Appl. 40, 1 (2001)

    ADS  MATH  Google Scholar 

  107. Allen, P.B.: Phys. Rev. Lett. 59, 1460 (1987)

    ADS  Google Scholar 

  108. Tzou, D.Y.: Macro- to Microscale Heat Transfer: The Lagging Behavior. Taylor & Francis, Washington, DC (1996)

    Google Scholar 

  109. Chen, J.K., Beraun, J.E., Tham, C.L.: Numer. Heat Transf. Part A Appl. 44, 705 (2003)

    ADS  Google Scholar 

  110. Carpene, E.: Phys. Rev. B 74, 024301 (2006)

    ADS  Google Scholar 

  111. Aktsipetrov, O.A., Fedyanin, A.A., Melnikov, A.V., Mishina, E.D., Rubtsov, A.N., Anderson, M.H., Wilson, P.T., Ter Beek, H., Hu, X.F., Dadap, J.I., Downer, M.C.: Phys. Rev. B 60, 8924 (1999)

    ADS  Google Scholar 

  112. Mihaychuk, J.G., Shamir, N., van Driel, H.M.: Phys. Rev. B 59, 2164 (1999)

    ADS  Google Scholar 

  113. Khairurrijal, Noor, F.A., Sukirno: Solid State Electron. 49, 923 (2005)

    Google Scholar 

  114. Zewail, A.H.: Science 328, 187 (2010)

    ADS  Google Scholar 

  115. Kim, J.S., LaGrange, T., Reed, B.W., Taheri, M.L., Armstrong, M.R., King, W.E., Browning, N.D., Campbell, G.H.: Science 321, 1472 (2008)

    ADS  Google Scholar 

  116. Tao, Z., Zhang, H., Duxbury, P.M., Berz, M., Ruan, C.-Y.: J. Appl. Phys. 111, 044316 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

The researches discussed in this lecture note were largely supported under grant DE-FG02-06ER46309 from the US Department of Energy. The analytic work on the charge dynamics was supported by US National Science Foundation under grant NSF-DMR 1126343. Partial support for R.A. Murdick is under grant 45982-G10 from the Petroleum Research Fund of the American Chemical Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-Yu Ruan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chang, K., Murdick, R.A., Han, TR.T., Yuan, F., Ruan, CY. (2014). Light-Induced Charge Carrier Dynamics at Nanostructured Interfaces Investigated by Ultrafast Electron Diffractive Photovoltammetry. In: Wu, J., Wang, Z. (eds) Quantum Dot Solar Cells. Lecture Notes in Nanoscale Science and Technology, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8148-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8148-5_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8147-8

  • Online ISBN: 978-1-4614-8148-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics